
CITS3005 Knowledge Representation
Lecture 06: Probabilistic Logic Programming

Tim French

The University of Western Australia

2023

Overview

In this lecture we will establish some basic properties of probability and
probabilistic reasoning, and the look at these concepts in the context of
Problog, a probabilistic logic programming language.

ProbLog2

ProbLog2 is a python3 library for probabilistic logic programming,
produced at KU Leuven It and can be installed via pip:
pip install problog

and run from the command line (>problog shell), or via a web
interface.

Probability Theory

We will first look at the funda-
mental properties of probability,
including:

▶ Events - things that happen.

▶ Dependence/Independence -
Whether events are related.

▶ Distributions - The possible
outcomes and likelihoods
for events.

▶ Sampling - Selecting an
event from a distribution

▶ Probability Spaces - the
semantics of probabilities.

▶ Probability axioms - the
logic of probability.

The concept of probability

▶ To describe variability of
outcomes of repeatable
experiments, e.g. chances of
getting “Heads” in a flip of
a coin, chances of failure of
a component (mass
production).

▶ To quantify the uncertainty
of an outcome of a
non-repeatable event. Here
the probability will depend
on the available
information.

▶ To measure the present
state of knowledge, e.g. the
probability that the detected
tumour is malignant.

Probabilities

Term experiment is used to refer to any process whose outcome is not
known in advance. Consider an experiment.

▶ Sample space S: A collection of all possible outcomes.

▶ Sample point s ∈ S: An element in S.
▶ Event A: A subset of sample points, A ⊂ S for which a statement

about an outcome is true.

Rules for probabilities:

Pr(A ∪ B) = Pr(A) + Pr(B), if A ∩ B = ∅.

For any event A,
0 ≤ Pr(A) ≤ 1.

Statements which are always false have probability zero, similarly,
always-true statements have probability one.

Kolmogorov Axioms

In probability theory, a probability space or a probability triple (Ω,F ,P)
is a mathematical construct that provides a formal model of a random
process or ”experiment”.
The elements of a probability space are

1. A sample space, Ω, which is the set of all possible outcomes.

2. An event space, which is a set of events F , an event being a
σ-algebra over Ω.

3. A probability function, P which assigns each event in the event
space a probability, which is a number between 0 and 1.

A σ-algebra over Ω is a set of subsets of Ω, closed under intersection,
complement and countable unions, and containing Ω.
The probability function P is countably additive, so if {Ai}∞i=1 ⊆ F is a
countable collection of pairwise disjoint sets, then
P(

⋃∞
i=1 Ai) =

∑∞
i=1 P(Ai), and P(Ω) = 1.

How to find ”useful” probabilities:

▶ Classically for finite sample spaces S, if all outcomes are equally probable
then

Pr(A) = number of outcomes for which A is true/number of outcomes

▶ Employ a concept of independence.

▶ Employ a concept of conditional probabilities.

If everybody agrees with the choice of Pr, it is called an objective probability.
(If a coin is “fair” the probability of getting tails is 0.5.)

For many problems the probability will depend on the information a person has

when estimating the chances that a statement A is true. One then speaks of

subjective probability.

Probability concepts

▶ Independence For a sample space S and a probability measure Pr,
the events A,B ⊂ S are called independent if
Pr(A ∩ B) = Pr(A) · Pr(B) and otherwise they are dependent.

▶ Conditional probability

Pr(B |A) = Pr(A ∩ B)

Pr(A)

The chances that some statement B is true when we know that
some statement A is true.

▶ Law of total probability Let A1, . . . ,An be a partition of the
sample space. Then for any event B

Pr(B) = Pr(B|A1) Pr(A1)+Pr(B|A2) Pr(A2)+ · · ·+Pr(B|An) Pr(An)

Bayes’ formula

Again let A1, . . . ,An be a partition of the sample space. The evidence is
that B is true. Which of alternatives is most likely to be true?

Bayes’ formula:

Pr(Ai |B) =
Pr(Ai ∩ B)

Pr(B)
=

Pr(B|Ai) Pr(Ai)

Pr(B)
=

Pr(Ai)

Pr(B)
Pr(B|Ai)

Name due to Thomas Bayes (1702-1761)

▶ Likelihood: L(Ai) = Pr(B|Ai) (How likely is the observed event B
under alternative Ai?)

▶ Events B1,B2 are conditionally independent if for all i ,

Pr(B1 ∩ B2|Ai) = Pr(B1 |Ai) Pr(B2 |Ai).

and Events B1, . . . ,Bn are conditionally independent if all pairs
Bi ,Bj are conditionally independent.

Bayesian Inference

Bayesian inference computes the posterior probability according to Bayes’
theorem:

P(H | E) = P(E | H) · P(H)

P(E)

▶ H stands for any hypothesis whose probability may be affected by data
(called evidence below).

▶ P(H), the prior probability, is the estimate of the probability of the
hypothesis H before the data E , the current evidence, is observed.

▶ E , the evidence, corresponds to new data that were not used in
computing the prior probability.

▶ P(H | E), the posterior probability, is the probability of H given E , i.e.,
after E is observed. (What we want to know).

▶ P(E | H) is the probability of observing E given H, and is called the
likelihood. As a function of E with H, it indicates the compatibility of the
evidence with the given hypothesis.

▶ P(E) is the marginal likelihood or model evidence, and is the same for all
possible hypotheses being considered.

Therefore, given a discrete finite set of events E1, . . .En ∈ F , the full joint
probability distribution is the set of all conditional probabilities of sets of events.

This can be thought of as a state of belief, or an approximate state of

knowledge.

Logic Programming (recap)

Recall the elements of logic programming from the first part of the
course.

▶ A logic program consists a set of clauses.

▶ The clauses contain predicates, operating on terms, which can be
variables, constants, or functions of terms.

▶ SLD resolution works by taking a query term and systematically,
performing substitution of variables and resolutions to deduce a
contradiction.

likes(peter,S):-student_of(S,peter).

student_of(S,T):-follows(S,C),teaches(T,C).

teaches(peter,ai_techniques).

follows(maria,ai_techniques).

Probabilistic Logic Programming

Probabilistic logic programming treats the ground literals of a logic
program as probabilistic events.

▶ When a program is evaluated the interpreter considers the
probability space of programs, and calculates the probability of a
given query literal.

▶ When a set of literals is sampled the interpreter samples the
probability space of programs and reports the value (true/false) of
those literals.

▶ When a variable is learnt the interpreter takes a program and some
evidence, and applies Bayesian inference to create a new model,
based on the evidence.

A probabilistic logic program is essentially a probability space of logic
programs which gives a much richer semantics for representing uncertain
knowledge.

ProbLog vs Prolog

ProbLog supports a subset of the Prolog
language for expressing models in proba-
bilistic logic.
The main difference between ProbLog’s
language and Prolog is that Prolog is
a complete logic programming language,
whereas ProbLog is a logic representa-
tion language. This means that most of
the functionality of Prolog that is related
to the programming part (such as con-
trol constructs and input/output) are not
supported in ProbLog.

Probabilistic facts

Likelihoods can be directly assigned to literals in the logic program.

% Probabilistic facts:

0.5::heads1.

0.6::heads2.

% Rules:

twoHeads :- heads1, heads2.

% Queries:

query(heads1).

query(heads2).

query(twoHeads).

Evaluating this program, problog coin.pl returns a probability,
twoheads : 0.3, rather than yes. or no.

Noisy-OR

Consider a variant of the above example in which we are just interested
in at least one coin landing heads. This example shows a useful aspect of
the ProbLog language:
multiple rules with the same head lead to a noisy-or effect in ProbLog.

% Probabilistic facts:

0.5::heads1.

0.6::heads2.

% Rules:

someHeads :- heads1.

someHeads :- heads2.

% Queries:

query(someHeads).

We calculate the probability someHeads using the noisy-or formula:

P(someHeads) = 1− (1− P(heads1))(1− P(heads2))

= 1− (1− 0.5)(1− 0.6) = 0.8.

Probabilistic clauses

Rather than just applying probabilities to ground literals, we can apply
probabilities to predicates and rules as well:
% Probabilistic facts:

0.6::heads(C) :- coin(C).

% Background information:

coin(c1).

coin(c2).

coin(c3).

coin(c4).

% Rules:

someHeads :- heads(_).

% Queries:

query(someHeads).

This gives a result for someHeads
of 0.9744. The probabilistic
rule is just “syntactic sugar” for
guarding a rule with a probabilis-
tic atom and each grounding of
a probabilistic predicate is treated
as an independent variable.

Annotated Disjunctions

We don’t always want our variables to be independent. An annotated
disjunction can be used to choose exactly one of a number of alternatives
(if their probabilities sum to 1.0).

% annotated disjunctions

1/6::one1; ... ; 1/6::six1.

3/20::one2; ... ;1/4 ::six2.

% Rules:

twoSix :- six1, six2.

someSix :- six1.

someSix :- six2.

% Queries:

query(six1).

query(six2).

query(twoSix).

query(someSix).

Again, this could be achieved
using probilistic literals and
the negation operator \+.

Recursion and Lists

The following ex-
ample is a dice
game where every
roll determines the
next die to roll,
but we stop if we
have used that die
before.
It uses three sided
dice, and calulates
the probability of
each possible out-
come.

1/3::dice(1,D); 1/3::dice(2,D);

1/3::dice(3,D) :- die(D).

die(X) :- between(1,3,X).

roll(L) :- next(1,[1],L).

next(N,Seen,Rev) :- dice(Now,N),

member(Now,Seen),

reverse(Seen,[],Rev).

next(N,Seen,List) :- dice(Now,N),

\+ member(Now,Seen),

next(Now,[Now|Seen],List).

member(X,[X|_]).

member(X,[_|Z]) :- member(X,Z).

reverse([],L,L).

reverse([H|T],A,L) :- reverse(T,[H|A],L).

query(roll(_)).

Problog as a Probability Space

A ProbLog program consists of two parts:
▶ a set of ground probabilistic facts. A ground probabilistic fact,

written p::f, is a ground fact f annotated with a probability p.
▶ and a logic program, i.e. a set of rules and (‘non-probabilistic’) facts.

The set of ground probabilostoc facts give a probability space of
interpretations for the program.
For example the following programs are equivalent:

0.7::red(X);

0.3::green(X)

:- ball(X).

ball(a).

ball(b).

ball(c).

query(red(_)).

query(green(_)).

0.7::choose_red_cprob(X).

1.0::choose_green_cprob(X).

choose_red(X) :- choose_red_cprob(X).

choose_green(X) :- \+choose_red(X),

choose_green_cprob(X).

red(X) :- ball(X), choose_red(X).

green(X) :- ball(X), choose_green(X).

ball(a). ball(b). ball(c).

query(red(_)).

query(green(_)).

Flexible Probabilities

In problog, probabilities can be treated as variables that will be unified by
SLD resolution. Below this is used in the intensional probabilistic fact
P::pack(Item) :-, the probability of packing an item is inversely
proportional to its weight.

weight(skis,6).

weight(boots,4).

weight(helmet,3).

weight(gloves,2).

% intensional probabilistic fact with flexible probability:

P::pack(Item) :- weight(Item,Weight), P is 1.0/Weight.

xs(Lim) :- xs([skis,boots,helmet,gloves],Lim).

xs([],Lim) :- Lim<0.

xs([I|R],Lim) :- pack(I), weight(I,W), L is Lim-W, xs(R,L).

xs([I|R],Lim) :- \+pack(I), xs(R,Lim).

query(xs(8)).

Bayesian Networks

Suppose there is a burglary in our house with probability 0.7 and an
earthquake with probability 0.2. Whether our alarm will ring depends on
both burglary and earthquake:
▶ if there is a burglary and an earthquake, the alarm rings with

probability 0.9;
▶ if there is only a burglary, it rings with probability 0.8;
▶ if there is only an earthquake, it rings with probability 0.1;
▶ if there is neither a burglary nor an earthquake, the alarm doesn’t

ring.
This may be represented by a simple Bayesian Network with 3 nodes, or
the following logic program:

0.7::burglary. 0.2::earthquake.

0.9::p_alarm1. 0.8::p_alarm2. 0.1::p_alarm3.

alarm :- burglary, earthquake, p_alarm1.

alarm :- burglary, \+earthquake, p_alarm2.

alarm :- \+burglary, earthquake, p_alarm3.

evidence(alarm,true).

query(burglary).

query(earthquake).

Learning from Evidence

Rather than specifying probabilities , we can set probabilities to be learnt
from evidence inone of three possible forms.

▶ Of the form t(_)::p_alarm1. This indicates that the probability of
this fact is to be learned from data, and initialises its value randomly.

▶ Of the form t(0.5)::burglary. This indicates that the probability
of this fact is to be learned from data, but will initialise the
probability as 0.5

▶ Of the form 0.2::earthquake. This indicates that the probability
of this fact is fixed (not learned).

Learning a model is different to evaluating a program. It requires:

1. An initial model, with learnable parameters, and

2. a set of evidence. These are separated by dash lines ----, indicating
independent samples.

Executing the learning function outputs the learning model.

Learning from Evidence
%%% The program:

t(0.5)::burglary.

0.2::earthquake.

t(_)::p_alarm1.

t(_)::p_alarm2.

t(_)::p_alarm3.

alarm :- burglary,

earthquake, p_alarm1.

alarm :- burglary,

\+earthquake, p_alarm2.

alarm :- \+burglary,

earthquake, p_alarm3.

%%% The data:

evidence(burglary,false).

evidence(alarm,false).

evidence(earthquake,false).

evidence(alarm,true).

evidence(burglary,true).

evidence(burglary,false).

The command $ problog lfi prog.pl example.pl -O learned.pl

outputs a learned program substituing teh trained variables.

Sampling

Problog can also be used to sample program executions:

0.7::leaf(T).

0.5::operator(’+’,T) ; 0.5::operator(’-’,T).

Px::l(x,T); P::l(0,T); P::l(1,T) :- Px = 0.5, P is (1-Px)/2.

expr(A) :- expr(A,1,R).

expr(L,T1,T2) :- leaf(T1), T2 is T1+1, l(L,T1).

expr(S,T1,T2) :- \+ leaf(T1), Ta is T1+1,

expr(E1,Ta,Tb), expr(E2,Tb,T2),

operator(Operator,Ta),

S =.. [Operator,E1,E2].

query(expr(A)).

The command $ problog sample prog.pl will produce a random
expression like expr(’+’(’+’(’-’(1,0),x),1)).

Decision Theory

This program states there is a chance that it will rain and will be windy.
Utility is given and the decisions are whether to bring an umbrella or a
raincoat.

% probabilistic facts

0.3::rain. 0.5::wind.

% decision facts

?::umbrella. ?::raincoat.

broken_umbrella :- umbrella, rain, wind.

dry :- rain, raincoat.

dry :- rain, umbrella, not broken_umbrella.

dry :- not(rain).

% utilities

utility(broken_umbrella, -40).

utility(raincoat, -20).

utility(umbrella, -2).

utility(dry, 60).

The command $ problog dt prog.pl will produce an optimal
decision, in this case, take an umbrella.

