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Overview

This lecture will look at the theory of clausal logic programming, and
then consider some logic programming techniques.
We will:
▶ Define clausal logic as a syntactic restriction of first order logic.
▶ Define Herbrand base and Herbrand models as an interpretation of

clausal logic.
▶ Consider proof theoretic properties of clausal logic: the soundness

and completeness or the resolution rule.
▶ Define (pure) logic programs as the restriction of clausal logic to

definite clauses.
▶ Discuss the concept of SLD resolution and proof trees.
▶ Consider the complexity of proof trees and logic programs, and the

effective use of cuts.
▶ Define accumulators as a means to manage the complexity of

programs.
▶ Present an small game as an example of a complete program.

This material comes from chapters 2 and 3 of Simply Logical, by Peter
Flach
https://book.simply-logical.space/src/simply-logical.html

https://book.simply-logical.space/src/simply-logical.html


First Order Logic to Clauses

We have seen the process for transforming FOL to quantifier free clauses.
To convert a formula into conjunctive normal form we need to:

1. push all the negations (¬) down to the literals, using de Morgan’s
laws, double negation and the duality of quantifiers.

2. remove all of the existential quantifiers, by adding in Skolemisation
functions.

3. remove all of the universal quantifiers, leaving the variables unbound

4. move all of the conjunctions to the outside of the formula, using the
distributivity laws.

5. remove all of the true/false constants.

This allows us to transform a first order formula:

∀X (p(X ) → ∃Y ∀Z (q(X ,Y ) ∧ q(Y ,Z )))

into a clausal representation:

q(X, f(X)) :- p(X).

q(f(X), Z) :- p(X).



Simple Case: Propositional Clausal Logic

Propositional clausal logic allows clauses of the form:

a1; a2 :- b1, b2, b3

where ai, bi are atoms, ; is disjunction, :- is implication and , is
conjunction.
A program is a set of clauses, for example the program P may be:

awake; sleeping :- person.

sleeping; young :- bored.

bored :- old.

:- young, old.

:- awake, sleeping.

awake.



Semantics

We have considered interpretations for First order logic, but we can give
semantics for logic clauses directly.

Definition
Herbrand Interpretation The Herbrand base of a program P is the set of
atoms occurring in P.
A Herbrand Interpretation for P is a mapping of the Herbrand base to
{true, false}.

In the given program the base is
{awake, sleeping, person, young, old, bored}, and an
interpretation may be I = {awake, person, young} (i.e. the atoms
that are true).

Definition
An interpretation I is a model of a program P if every clause in P is true
in I .
A clause C is a consequence of a program P (written P |= C) if C is true
in every model of P.

Exercise: How many models does P have?



Resolution

To apply inference in clausal logic, we only require one rule, resolution:

Definition
The resolution rule takes two clauses, C1 and C2, with a common atom
a in the head of C1 and the tail of C2, and produces a new clause whose
head is the union of the head of C1 and C2 with a, and whose tail is the
union of the tails of C1 and C2 with a.

For example, given:

h1; h2 :- t1, t2, t3. h3; t2 :- t4, t5, t6

resolution would produce h1; h2; h3 :- t1, t3, t4, t5, t6.



Soundness, Completeness and Refutation

Resolution is sound
If C1 and C2 are clauses and C3 results from applying resolution to C1
and C2, then for every program P where P |= C1 and P |= C2 we have
P |= C3.

Resolution is not complete

Given a program P, resolution cannot derive every clause that is true in
every model of P. For example, h1 :- h1 is true in every model, but
the clause cannot always be derived.

However, we can show that resolution is refutation complete. That is, if
a program has no models we can apply resolution to derive the empty
clause :-.

Propositional clausal logic is decidable

Since the Herbrand base of a Program is finite, and resolution is
refutation complete, we can apply resolution systematically until either
we find a refutation or we find no new clauses.



Full Clausal Logic

Full clausal logic replaces the atoms of propositional clausal logic with
predicates that act on terms (atoms or functions of terms).

teaches(X,course(Z)); supervises(X,Z) :- student_of(X,Z)

likes(peter,S):-student_of(S,peter).

student_of(maria,peter).

The disjunctions, conjunctions and implications are the same, but now
the truth values are about things.
Clauses now have variables (terms beginning with capital letters) which
range over all terms.



Full Herbrand Models

Without functions, the Herbrand base is just every predicate applied to
every atom, e.g.:

{ likes(peter,peter), likes(peter,maria),

likes(maria,peter), likes(maria,maria),

student_of(peter,peter), student_of(peter,maria),

student_of(maria,peter), student_of(maria,maria) }

With functions, the Herbrand base becomes every predicate applied every
function applied to every term, and therefore infinite:

{ plus(0,0,0), plus(s(0),0,0), ...,

plus(0,s(0),0), plus(s(0),s(0),0), ...,

...,

plus(s(0),s(s(0)),s(s(s(0)))), ... }

However, the definitions of Herbrand interpretation and Herbrand model
remain. For a Herbrand interpretation to satisfy a clause containing a
variable, the interpretation must satisfy every clause resulting from a
uniform substitution of terms for the variables in the clause.



Resolution and Most General Unifier

To apply resolution to clauses we are required to find a substitution that
makes the clauses the same with respect to the Herbrand base (and then
propositional resolution can be applied).
There are typically many ways to do this, so we define a most general
unifier (mgu) which is a substitution that makes the least commitment.
For:
plus(s(0),X,s(X)) and plus(s(Y),s(0),s(s(Y))) the mgu
{Y -> 0, X -> s(0)} gives the predicate plus(s(0),s(0),s(s(0))).
Note, some naive attempts to find a unifier can lead to infinite terms so a
looping check is required: e.g. p(X, f(X)) and p(X, X).
Resolution can the be applied:

likes(peter,S):-student_of(S,peter).

student_of(X,T):-follows(X,C),teaches(T,C).

resolves to likes(peter,S):-follows(S,C),teaches(peter,C).

through the substitution {X->S, T->peter}.



Example

The following proof is a refutation of of :-likes(peter, N). given the
program:

likes(peter,S):-student_of(S,peter).

student_of(S,T):-follows(S,C),teaches(T,C).

teaches(peter,ai_techniques).

follows(maria,ai_techniques).



Completeness

Given the common notion of a Herbrand Interpretation, the soundness
and refutation completeness results are the the same as for propositional
clausal logic.
However, since the Herbrand base is now infinite, consistency is now only
semi-decidable

Resolution is semi-decidable
While resolution is refutation complete: any inconsistent program can be
shown to have a refutation; it is only semi-decidable because there is no
definite procedure to show that a program is not consistent.



Definite Clauses

Full clausal logic allows indefinite clauses:
married(peter);bachelor(peter).

Definite clauses add the restriction that every clause in a program must
have exactly one positive literal, so -:married(X). or
male(X); female(X). are not allowed.
The restriction to definite clauses:

▶ decreases the expressive power of the logic

▶ does not affect any of the soundness, completeness or decidability
results.

▶ gives a clear systematic way to apply resolution.

▶ supports the open world assumption: every Herbrand base is a
Herbrand model of every program.



Logic Programming as Definite Clause Logic

Pure logic programs are a direct implementation of Definite Clause Logic,
and are implemented in Prolog

▶ A program is a set of definite clauses (with predicates, variables and
functions).

▶ A query is a conjunction of literals.

▶ An execution of a program is an attempted proof of the refutation of
the query.

▶ If the query is refuted, No. is reported.

▶ If a query is not refuted (a substitution is found in some Herbrand
Model satisfying the program) the substitution is reported.

Prolog also adds some no logical features, such as cuts, assert and IO
functions with side affects. These are not part of definite clause logic.
Definite Clause Logic is declarative: it just describes what is true. Logic
programming is a declarative programming paradigm, but you can
consider an execution as a search for a proof of what is true.



SLD Resolution

Logic programming constrains definite clause logic to use SLD resolution:

▶ Selection rule: Prolog applies a selection rule to find the next clause
and literal to resolve: this is typically:

1. the left most clause in the query string (or resolvent) as the literal
2. the first clause in the program whose head can unify with that literal
3. and Prolog inserts the tail of that clause (after substitution) at the

front of the resolvent.

▶ Linear resolution: the process always produces linear proofs, and we
only need to keep track of a single resolvent.

▶ Definite clauses: exactly one positive literal per clause.

If nothing matches the selection rule we backtrack to find the next clause
from the top of the program that might apply.
These constraints make it possible to design very efficient computation
engines for Prolog, and we can visualise program executions as SLD-trees.



SLD Trees

Given a program, we can view the execution of that program simply by
recording the resolvent at each step of the program.
The trees record the branches that fail (the head of the resolvent may
not be able to unify with anything) as well as the linear proof.

student_of(X,T):-follows(X,C),teaches(T,C).

follows(paul,computer_science).

follows(paul,expert_systems).

follows(maria,ai_techniques).

teaches(adrian,expert_systems).

teaches(peter,ai_techniques).

teaches(peter,computer_science).



Cuts and SLD Trees

SLD Trees or executions can be infinite, so
cuts can be using to control the execution
flow.
Syntactically a cut is a literal ! that ap-
pears in a clause. Once a cut is reached,
all choice points between the head of the
clause and the cut are removed from the
top of the stack.
Cuts can removed pointless search space
green cuts, or can remove successful
branches red cuts.
Red cuts change the meaning of a pro-
gram but can be exploited.



Negation as Failure

Red cuts can be useful We can define a program to represent “negation”
in Prolog, by using the cut operation

not(P) :- P, !, fail.

not(P).

Here we have a predicate not that takes any predicate, P as an
argument, and if P can be satisfied, a cut is applied to prevent
backtracking and the clause fails. Otherwise, not(P) will be true.
This is not classical negation, and better described as “failure to prove”.
For example, what is the result of the query ?- supp(X,Y):

supp(X,Y) :- not(pass(X,Y)), sat(X,Y).

sat(tim,cits3005).

sat(jane,cits3005).

pass(jane, cits3005).

It also breaks the Open World Assumption.



SLD Tree Complexity

Cuts can also be used to improve the efficiency of programs:

if_then_else(S,T,U):-S,!,T.

if_then_else(S,T,U):-U. vs

p:-q,r,s,!,t.

p:-q,r,u.

q.

r.

u.

or to free up memory in large search spaces:

play(Board,Player):-lost(Board,Player).

play(Board,Player):-

find_move(Board,Player,Move),

make_move(Board,Move,NewBoard),!

next_player(Player,Next),

play(NewBoard,Next).



Head and Tail Recursion

SLD trees can show where memory and computation may be inefficient:

naive_length([],0).

naive_length([_H|T],N):-naive_length(T,M),N is M+1.

versus

length_acc(L,N):-length_acc(L,0,N).

length_acc([],N,N).

length_acc([_H|T],N0,N):-N1 is N0+1,length_acc(T,N1,N).

Here an accumulator is used to compute the running length as we go,
rather than maintaining a large expression.



Accumulators

Another example of an accumulator can be seen in the reversal of a list:

naive_reverse([],[]).

naive_reverse([H|T],R):-naive_reverse(T,R1),append(R1,[H],R).

append([],Y,Y).

append([H|T],Y,[H|Z]):-append(T,Y,Z).

versus

reverse(X,Y):- reverse(X,[],Y).

reverse([],Y,Y).

reverse([H|T],Y0,Y):- reverse(T,[H|Y0],Y).



Bringing It Together: Tic tac toe

Imagine we would like to design Prolog program for playing tic tac toe.
We can break the task down:

▶ Get valid moves.

▶ Determine if a move is a winning move.

▶ Display the board.

▶ Run the game loop.

The following game was written by S. Tanimoto and is available from
https://swish.swi-prolog.org/p/Tic-Tac-Toe.swinb

https://swish.swi-prolog.org/p/Tic-Tac-Toe.swinb


Tic Tac Toe: Get Valid Moves.

move([b,B,C,D,E,F,G,H,I], Player, [Player,B,C,D,E,F,G,H,I]).

move([A,b,C,D,E,F,G,H,I], Player, [A,Player,C,D,E,F,G,H,I]).

move([A,B,b,D,E,F,G,H,I], Player, [A,B,Player,D,E,F,G,H,I]).

move([A,B,C,b,E,F,G,H,I], Player, [A,B,C,Player,E,F,G,H,I]).

move([A,B,C,D,b,F,G,H,I], Player, [A,B,C,D,Player,F,G,H,I]).

move([A,B,C,D,E,b,G,H,I], Player, [A,B,C,D,E,Player,G,H,I]).

move([A,B,C,D,E,F,b,H,I], Player, [A,B,C,D,E,F,Player,H,I]).

move([A,B,C,D,E,F,G,b,I], Player, [A,B,C,D,E,F,G,Player,I]).

move([A,B,C,D,E,F,G,H,b], Player, [A,B,C,D,E,F,G,H,Player]).

% The following translates integers to moves

xmove([b,B,C,D,E,F,G,H,I], 1, [x,B,C,D,E,F,G,H,I]).

xmove([A,b,C,D,E,F,G,H,I], 2, [A,x,C,D,E,F,G,H,I]).

xmove([A,B,b,D,E,F,G,H,I], 3, [A,B,x,D,E,F,G,H,I]).

xmove([A,B,C,b,E,F,G,H,I], 4, [A,B,C,x,E,F,G,H,I]).

xmove([A,B,C,D,b,F,G,H,I], 5, [A,B,C,D,x,F,G,H,I]).

xmove([A,B,C,D,E,b,G,H,I], 6, [A,B,C,D,E,x,G,H,I]).

xmove([A,B,C,D,E,F,b,H,I], 7, [A,B,C,D,E,F,x,H,I]).

xmove([A,B,C,D,E,F,G,b,I], 8, [A,B,C,D,E,F,G,x,I]).

xmove([A,B,C,D,E,F,G,H,b], 9, [A,B,C,D,E,F,G,H,x]).

xmove(Board, _, Board) :- write(’Illegal move.’), nl.



Tic tac toe: Check winning position

% Predicates that define the winning conditions:

win(Board, Player) :- rowwin(Board, Player).

win(Board, Player) :- colwin(Board, Player).

win(Board, Player) :- diagwin(Board, Player).

rowwin(Board, Player) :- Board = [Player,Player,Player,_,_,_,_,_,_].

rowwin(Board, Player) :- Board = [_,_,_,Player,Player,Player,_,_,_].

rowwin(Board, Player) :- Board = [_,_,_,_,_,_,Player,Player,Player].

colwin(Board, Player) :- Board = [Player,_,_,Player,_,_,Player,_,_].

colwin(Board, Player) :- Board = [_,Player,_,_,Player,_,_,Player,_].

colwin(Board, Player) :- Board = [_,_,Player,_,_,Player,_,_,Player].

diagwin(Board, Player) :- Board = [Player,_,_,_,Player,_,_,_,Player].

diagwin(Board, Player) :- Board = [_,_,Player,_,Player,_,Player,_,_].



Tic tac toe: Run the game loop
% Helping predicate for alternating play in a "self" game:

other(x,o).

other(o,x).

game(Board, Player) :-

win(Board, Player),

!,

write([player, Player, wins]).

game(Board, Player) :-

other(Player,Otherplayer),

move(Board,Player,Newboard),

!,

display(Newboard),

game(Newboard,Otherplayer).

selfgame :- game([b,b,b,b,b,b,b,b,b],x).



Tic tac toe: Adding “AI”.

% Predicates to support playing a game with the user:

x_can_win_in_one(Board) :- move(Board, x, Newboard), win(Newboard, x).

% The predicate orespond generates the computer’s (playing o) reponse

orespond(Board,Newboard) :-

move(Board, o, Newboard),

win(Newboard, o), !.

orespond(Board,Newboard) :-

move(Board, o, Newboard),

not(x_can_win_in_one(Newboard)).

orespond(Board,Newboard) :-

move(Board, o, Newboard).

orespond(Board,Newboard) :-

not(member(b,Board)),

!,

write(’Cats game!’), nl,

Newboard = Board.



Tic tac toe: Run the game
display([A,B,C,D,E,F,G,H,I]) :- write([A,B,C]), nl,

write([D,E,F]), nl,

write([G,H,I]), nl, nl.

explain :-

write(’You play X by entering integer position.’),

nl,

display([1,2,3,4,5,6,7,8,9]).

playfrom(Board) :- win(Board, x), write(’You win!’).

playfrom(Board) :- win(Board, o), write(’I win!’).

playfrom(Board) :- read(N),

xmove(Board, N, Newboard),

display(Newboard),

orespond(Newboard, Newnewboard),

display(Newnewboard),

playfrom(Newnewboard).

playo :- explain, playfrom([b,b,b,b,b,b,b,b,b]).
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