
CITS3005 Knowledge Representation
Lecture 3: Logic Programming

Tim French

The University of Western Australia

2023

Overview

In this lecture we will consider the basic elements of logic programming.

Prolog began as an implementation of a resolution engine that grew into
a programming language in its own right.

Prolog has pragmatic implemen tation choices that assist efficient and
predictable computations, while still allowing intuitive deduction and
reasoning.

Running Prolog

Prolog has many implementations, that all loosely conform to a standard
and typical run through a terminal.
$> swipl program_name.pl

although you can also use Gnu Prolog ($>gprolog), or others.

A prolog program is a knowledge base:

red(apple).

green(apple).

red(tomato).

fruit(apple).

redFruit(X) :- fruit(X), red(X).

It is either loaded when the program is run, or the rules can be loaded
with the command: [’program_name.pl’].
To quit prolog type
halt.

Queries

To interact, or run a program, you typically submit queries at the prolog
prompt:
? redFruit(X).

All prologs commands are interpreted as queries, and end with a full stop.
When prolog interprets a query, it applies resolution and unification with
the knowledge base.
If it is able to derive the query from the knowledge base it responds with
True and gives the first satisfying substitution it found.:

True.

X=apple

You can type ; to see if there are any more substitutions that work

True.

X=apple ;

False.

When no more substitutions can be found Prolog responds with False.

Elements of a Prolog Program

A prolog program is simply a set of clauses. Furthermore, traditionally
these are Horn Clauses which are clauses with only one positive literal.
i.e. redFruit(X) :- fruit(X), apple(X). is valid, but
fruit(X), apple(X) :- redFruit(X). is not.
In the clauses there are elements:

1. atoms apple, tomato

2. Strings ’Hello World’

3. Integers 0,1,2,....

4. Floats 3.14

5. Functions/Structures date(11,8,2022)

6. Lists [apple, 0, ’Hello’]

and predicates, like red(apple).
A conjunction of of predicates is written as
red(apple), fruit(apple), a disjunction is written
red(apple); green(apple)

Every clause and query ends with a full stop.

Atoms, Functions and Predicates

The core of Prolog’s power is through unification and resolution, and
these are applied to atoms, variables, functions and predicates.

▶ an atom is a name of a thing that cannot be further divided, and
begins with a lowercase letter.

▶ a function takes a thing (atom, or function applied to a thing).

▶ a predicate take arguments (atoms, functions, or even other
predicates) and produces a true false value.

▶ a variable is a placeholder that can be unified with things (atoms,
functions applied to atoms), but also predicates.

eq(zero, zero).

eq(f(X),f(Y)) :- eq(X,Y).

or(P,Q) :- P.

or(P,Q) :- Q.

There are several useful builtin predicates, including true (a zero place
predicate that always succeeds), and false (a zero place predicate that
always fails, also written as fail).

Comparison Operators

As in most programming languages there are several ways to compare
different terms and predicates, and these themselves are predicates:

▶ X = Y is true if X unifies with Y.

▶ X \= Y is true if X does not unify with Y.

▶ X == Y is true if X and Y are identical terms.

▶ X \== Y is true if X and Y are not identical terms

.

Built-in Data-Types: Numbers

Prolog has numeric data types of integers (...,-1,0,1,2,...) and floats (e.g.
3.14). Prolog uses representations optimised for hardware, but this means
unification cannot be applied if arithmetic expressions are evaluated.

?- A+1=B+2.

no

?- A+1=2+B.

A = 2

B = 1

yes

Comparison Meaning Operator Meaning
X > Y X is greater than Y + Addition
X < Y X is less than Y - Subtraction
X >= Y X is greater than or equal to Y * Multiplication
X =< Y X is less than or equal to Y / Division
X =:= Y the X and Y values are equal ** Power
X =\= Y the X and Y values are not equal // Integer Division
X is Y assign Y to X mod Modulus

Built-in Data-Types: Strings

Strings are are immutable, and delimited by single or double quotes in
Prolog: ’CITS3005’. Strings with single quotes are atoms (names of
things), while string with double quotes are Strings.
note: the Availability of some of these functions varies between prolog
implementations
Characters are stored as ASCII codes, and can be declared as 0’t. There
are functions available to convert from lower case to upper case:
lower_upper(’t’, X).
To convert an atom string to a list of characters use:
atom_chars(’cites3005’,X).
To compare atom strings use the following operators:

Comparison Meaning
T1 @< T2 succeeds if T1 is alphabetically before T2
T1 @=< T2 succeeds if T1 is alphabetically before or equal to T2
T1 @> T2 succeeds if T1 is alphabetically after T2
T1 @>= T2 succeeds if T1 is alphabetically after or equal to T2
T1 =:= T2 the T1 and T2 values are equal
T1 =\= T2 the T1 and T2 values are not equal

Lists

Lists in prolog are treated as having two parts: the head element of the
list and the tail of the list. This is a two place predicate which can be
used to describe arbitrary lists.
Lists can be described in one of three ways:
▶ a comma separated list enclosed in square brackets, e.g.

[10, -1, 8, 20]
▶ as two parts, the head and tail, separated by a vertical bar, e.g. [

HeadElem | TailList]
▶ via the built in predicate . and empty list constant []:

.(10,.(-1,.(8,20))))

The elements within lists can be any collection of valid data items,
including lists of lists, etc. For example:
[3, ’foo’, [x, [y]], 17]

Beware of the difference between [a,b|c] and [a,b,c].
This representation lends itself to a natural recursive definition of
operations:

member(X, [X|_]).

member(X, [_|Tail]) :- member(X,Tail).

List Operations

Some of the built-in list operations include:

Operation Description
list(List) True if List is a list

length(List,Length) The length of List
min list(List, Elem) The minimum element in a list
max list(List, Elem) The maximum element in a list

append(List1, List2, Result) The concatenation of two lists
member(Elem,List) True is Elem is in List

delete(List, Elem, Result) Result is List with all Elem remove
last(List,Elem) The last element of List.

reverse(List, Result) Result is List reversed.
permutation(List, PermutedList) PermutedList is a permutation of List

nth0(Position, List, Elem) Elem is in position Position in List

sort(List, Result) Result is List sorted

How would you implement a predicate indexOf(Elem, List, N) where
N is the first index of Elem in List, or -1 if Elem is not in List?

Execution of a Logic Program

A logic program executes by repeated application of resolution. Once the
knowledge base is loaded (?-[my_program.pl].), and some query is
entered (?-check(this,Out), see(Out).) then:
1. Prolog will take the left most element of the query conjuncts, call

this q.
2. Prolog will go through the knowledge base row by row until it finds

a clause with a head that can unify with q.
3. Prolog will apply unification to both the matched clause and the

entire query conjunct and then applies resolution, to get a new set
of literals which are inserted at the front of the query conjunct (i.e.
a depth first search).

4. Then prolog takes the element at the front of the query conjunct
and repeats the entire process.

5. If Prolog cannot find a clause that matches q in step 2, it will
reverse the last unification and resolution step it made, and continue
searching top down through the set of clauses for the next match.

6. If Prolog cannot find a clause that matches q and there are no steps
left to reverse, prolog reports no.

7. If Prolog resolves all the query conjuncts, prolog reports yes and
returns the successful substitution.

ExampleTrace

Suppose we build a simple system to perform arithmetic modulo 3.

limit((f(f(f(zero))))).

sum(X, zero, Y):- reduce(X,Y).

sum(X, f(Y), Z):- sum(X,Y,W), reduce(f(W),Z).

mult(X, zero, zero).

mult(X, f(Y), Z):- mult(X,Y,W), sum(X,W,W1), reduce(W1,Z).

equals(zero,zero).

equals(f(X),f(Y)):- reduce(X,A), reduce(Y,B), equals(A,B).

reduce(zero,zero).

reduce(X,zero):-limit(X).

reduce(f(X),f(Y)):-reduce(X,Y).

| ?- mult(f(zero),f(zero),X).

1 1 Call: mult(f(zero),f(zero),_27) ?

2 2 Call: mult(f(zero),zero,_98) ?

2 2 Exit: mult(f(zero),zero,zero) ?

3 2 Call: sum(f(zero),zero,_124) ?

4 3 Call: reduce(f(zero),_148) ?

5 4 Call: limit(f(zero)) ?

5 4 Fail: limit(f(zero)) ?

5 4 Call: reduce(zero,_135) ?

5 4 Exit: reduce(zero,zero) ?

4 3 Exit: reduce(f(zero),f(zero)) ?

3 2 Exit: sum(f(zero),zero,f(zero)) ?

6 2 Call: reduce(f(zero),_27) ?

7 3 Call: limit(f(zero)) ?

7 3 Fail: limit(f(zero)) ?

7 3 Call: reduce(zero,_188) ?

7 3 Exit: reduce(zero,zero) ?

6 2 Exit: reduce(f(zero),f(zero)) ?

1 1 Exit: mult(f(zero),f(zero),f(zero)) ?

X = f(zero) ?

Loops and Cuts

As Prolog uses backtracking and depth first search:

▶ it is easy to create infinite loops in the program.

▶ completing a full search of the proof tree can be inefficient.

A cut is a syntactic construct that can be inserted into a program that
tells it to stop backtracking.

not(P) :- P, !, false.

not(P).

The ! is a cut that causes the, program to stop any backtracking past
the cut, to satisfy the head of the clause.

Special Operators

There a re a variety of non-logical operators in prolog, that “break” the
representation of a logic program in first order logic. That is, they have
side effects, some of which can alter the knowledge base. These include:

▶ read(X) read a string from the user and unify it with X.

▶ write(X) writes a string to the console.

▶ asserta((P(X) :-Q(X))) inserts a new rule to the top of the
knowledge base.

▶ assertz((P(X) :-Q(X))) inserts a new rule to the bottom of the
knowledge base.

▶ consult(file) adds a new set of clauses to the knowledge base,
overwriting conflicting predicates.

▶ halt halts Prolog.

▶ var(X) true if X is an unbound variable at this point in the program.

Negation

Negation in logic programming is not as straightforward as it is in other
languages. where there is no implicit quantification when evaluating
logical statements (like Java or Python).

Understanding how negation by failure works is essential for both logic
programming, and understanding the theory of knowledge bases.

Prolog maintains a knowledge base, and when we pose a query, we are
not asking “What is true in the world”; we are asking “What can be truly
derived from the knowledge base”.

If a fact, α cannot “be truly derived from the knowledge base”, it does
not necessarily follow the ¬α can be derived from the knowledge base.

Some of the notes are adapted from the book: Simply Logical, by Peter
Flach
https://book.simply-logical.space/src/simply-logical.html.

https://book.simply-logical.space/src/simply-logical.html

Knowledge Bases

A knowledge base can be thought of as a collection of facts (much like a
database), along with a general means of deriving new facts and
constraining existing information.
For example, consider the following representations of a transport
network:

connected(bond street,oxford circus,central).

connected(oxford circus,tottenham court road,central).

connected(bond street,green park,jubilee).

connected(green park,charing cross,jubilee).

connected(green park,piccadilly circus,piccadilly).

connected(piccadilly circus,leicester square,piccadilly).

connected(green park,oxford circus,victoria).

connected(oxford circus,piccadilly circus,bakerloo).

connected(piccadilly circus,charing cross,bakerloo).

connected(tottenham court road,leicester square,northern).

connected(leicester square,charing cross,northern).

Knowledge Bases

The two representations contain the same information, but if we want to
express synthetic concepts, like stations being nearby (with two stops) or
on the same line, what this concept means can be included in the
knowledge base and used to populate these concepts:

nearby(X,Y):-connected(X,Y,_L).

nearby(X,Y):-connected(X,Z,L),connected(Z,Y,L).

We can use this to derive possibly derive that Bond Street and Charing
Cross are not nearby, but probably not to derive that Subiaco and
Leederville are not nearby

Unknown Unknowns

The is a significant asymmetry between what we know and can apply
deduction to, and what is unknown.

Reports that say that something hasn’t happened are always in-
teresting to me, because as we know, there are known knowns;
there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns—the
ones we don’t know we don’t know. And if one looks throughout
the history of our country and other free countries, it is the latter
category that tends to be the difficult ones.

Donald Rumsfeld

The Closed World Assumption

The Closed World Assumption

The closed-world assumption (CWA), in knowledge representation is the
presumption that a statement that is true is also known to be true, and
conversely what is not currently known to be true, is false.

The opposite of the closed world assumption is the Open World
Assumption, which presumes that only statements that can be said to be
false, are those statements that are provably false.

In general, knowledge bases (both formal and informal) tend to record
much more positive information than negative information, so there is a
natural asymmetry in how deduction is applied

Aside: Belief Revision

What happens when our knowledge is wrong? Logically, if our knowledge
base contains an incorrect fact, and this is not consistent with other facts
in the knowledge base, all reasoning breaks down:

K |= ⊥ =⇒ ∀αK |= α

.
Belief Revision is the process of repairing a knowledge base when new
information comes to light, or correcting a misconception.
Operators are defined to modify a knowledge base by:

▶ K ⊕ φ - extend a knowledge base by a fact.

▶ K ⊖ φ - retract a fact from a knowledge base.

▶ K ⊗ φ - revise a knowledge base with new information.

It is non-trivial to decide which facts ought to be rescinded to allow new
information to be added. Alchourron, Gardenfors and Makinson proposed
the AGM postulates for rational belief revision.

Negation in Prolog

We can define a program to represent “negation” in Prolog, by using the
cut operation

not(P) :- P, !, fail.

not(P).

Here we have a predicate not that takes any predicate, P as an
argument, and if P can be satisfied, a cut is applied to prevent
backtracking and the clause fails. Otherwise, not(P) will be true.

However, when we say P can be satisfied, we mean that there is some
substitution for which P can be derived from our knowledge base.

Therefore not(P) is true when there is no substitution for which P can
be derived from our knowledge base, so P and not(P) are quite different
sorts of information.

Negation as Failure

This interpretation of negation is refereed to as negation as failure, and is
a consequence of the closed world assumption. If something is not
provable then its negation should be true.
This can lead to problems:

bachelor(X):-not(married(X)),man(X).

man(fred).

man(peter).

married(fred).

What does ?- bachelor(X). return? Is there a way to correct this
program?

As the closed world assumption rarely applies to knowledge bases, the
preferred representation for negation as failure is

bachelor(X):- \+married(X), man(X).

which is read as not provable that married(X), although its
implementation is the same.

