

3D orientation

• Rotation matrix

• Fixed angle and Euler angle

• Axis angle

• Quaternion

• Exponential map

Joints and rotations
Rotational DOFs are widely used in character animation

3 translational DOFs

48 rotational DOFs

Each joint can have up to 3 DOFs

1 DOF: knee 2 DOF: wrist 3 DOF: arm

Representation of orientation

• Homogeneous coordinates (review)

• 4X4 matrix used to represent translation,
scaling, and rotation

• a point in the space is represented as

• Treat all transformations the same so that they
can be easily combined

p =

⎡

⎢

⎢

⎣

x

y

z

1

⎤

⎥

⎥

⎦

Translation

⎡

⎢

⎢

⎣

x + tx
y + ty
z + tz

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x

y

z

1

⎤

⎥

⎥

⎦

translation
matrixnew point old point

Scaling

⎡

⎢

⎢

⎣

sxx

syy

szz

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x

y

z

1

⎤

⎥

⎥

⎦

scaling matrixnew point old point

Rotation

⎡

⎢

⎢

⎣

x′

y′

z′

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x′

y′

z′

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x′

y′

z′

1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x
y
z
1

⎤

⎥

⎥

⎦

X axis

Y axis

Z axis

Quiz

• True or False: Given an arbitrary rotation
matrix R

• R is always orthonormal

• R is always symmetric

• RRT = I

• Rx(30)Ry(60) = Ry(60)Rx(30)

Interpolation

• In order to “move things”, we need both
translation and rotation

• Interpolation the translation is easy, but what
about rotations?

Interpolation of orientation

• How about interpolating each entry of the
rotation matrix?

• The interpolated matrix might no longer be
orthonormal, leading to nonsense for the in-
between rotations

Interpolation of orientation
Example: interpolate linearly from a positive 90
degree rotation about y axis to a negative 90
degree rotation about y

⎡

⎢

⎢

⎣

0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0 0 −1 0

0 1 0 0

1 0 0 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

⎤

⎥

⎥

⎦

Linearly interpolate each
component and halfway
between, you get this...

Properties of rotation matrix

• Easily composed? Yes

• Interpolate? No

• Rotation matrix

• Fixed angle and Euler angle

• Axis angle

• Quaternion

• Exponential map

Fixed angle

• Angles used to rotate about fixed axes

• Orientations are specified by a set of 3 ordered
parameters that represent 3 ordered rotations
about fixed axes

• Many possible orderings

Euler angle

• Same as fixed angles, except now the axes move
with the object

• An Euler angle is a rotation about a single
Cartesian axis

• Create multi-DOF rotations by concatenating
Euler angles

• evaluate each axis independently in a set order

Euler angle vs. fixed angle
• Rz(90)Ry(60)Rx(30) = Ex(30)Ey(60)Ez(90)

• Euler angle rotations about moving axes written
in reverse order are the same as the fixed axis
rotations

Z

Y

X

Properties of Euler angle

• Easily composed? No

• Interpolate? Sometimes

• How about joint limit? Easy

• What seems to be the problem? Gimbal lock

Gimbal Lock

A Gimbal is a hardware implementation
of Euler angles used for mounting
gyroscopes or expensive globes

Gimbal lock is a basic problem with
representing 3D rotation using Euler
angles or fixed angles

Gimbal lock
When two rotational axis of an object pointing in the
same direction, the rotation ends up losing one degree
of freedom

• Rotation matrix

• Fixed angle and Euler angle

• Axis angle

• Quaternion

• Exponential map

Axis angle

• Represent orientation as a vector and a scalar

• vector is the axis to rotate about

• scalar is the angle to rotate by

x

y

z

Properties of axis angle

• Can avoid Gimbal lock. Why?

• It does 3D orientation in one step

• Can interpolate the vector and the scalar
separately. How?

Axis angle interpolation

B = A1 × A2

φ = cos
−1

(

A1 · A2

|A1||A2|

)

Ak = RB(kφ)A1

θk = (1 − k)θ1 + kθ2

x

y

z

A2

θ2

A1
θ1

Properties of axis angle

• Easily composed? No, must convert back to
matrix form

• Interpolate? Yes

• Joint limit? Yes

• Avoid Gimbal lock? Yes

• Rotation matrix

• Fixed angle and Euler angle

• Axis angle

• Quaternion

• Exponential map

Quaternion: geometric view

θ2

θ1

1-angle rotation can be
represented by a unit circle

(θ1,φ1)

(θ2,φ2)

2-angle rotation can be
represented by a unit sphere

What about 3-angle rotation?

A unit quaternion is a point on the 4D sphere

Quaternion: algebraic view
4 tuple of real numbers: w, x, y, z

q =

⎡

⎢

⎢

⎣

w

x

y

z

⎤

⎥

⎥

⎦

=

[

w

v

]

scalar
vector

r

θ
q =

[

cos (θ/2)
sin (θ/2)r

]

Same information as axis angles but in a different form

Basic quaternion definitions

• Unit quaternion

• Inverse quaternion

• Identity

|q| = 1

x
2

+ y
2

+ z
2

+ w
2

= 1

q
−1

=

q
∗

|q|

qq
−1

=

⎡

⎢

⎢

⎣

1

0

0

0

⎤

⎥

⎥

⎦

Conjugate q
∗

=

[

w

v

]

∗

=

[

w

−v

]

Quaternion multiplication

• Commutativity

• Associativity

[

w1

v1

] [

w2

v2

]

=

[

w1w2 − v1 · v2

w1v2 + w2v1 + v1 × v2

]

q1q2 ̸= q2q1

q1(q2q3) = (q1q2)q3

Quaternion Rotation

qp =

[

0

p

]

q =

[

cos (θ/2)
sin (θ/2)r

]

If is a unit quaternion andq

then results in rotating about by qqpq
−1

r θp

proof: see Quaternions by Shoemaker

p

x

y

z

θ

r

Quaternion Rotation
qqpq

−1
=

[

w

v

] [

0

p

] [

w

−v

]

=

[

w

v

] [

p · v

wp − p × v

]

= 0
=

[

wp · v − v · wp + v · p × v

w(wp − p × v) + (p · v)v + v × (wp − p × v)

]

[

w1

v1

] [

w2

v2

]

=

[

w1w2 − v1 · v2

w1v2 + w2v1 + v1 × v2

]

Quaternion composition

If and are unit quaternionq2q1

q3 = q2 · q1

the combined rotation of first rotating by and
then by is equivalent to

q1

q2

Matrix form

q =

⎡

⎢

⎢

⎣

w

x

y

z

⎤

⎥

⎥

⎦

R(q) =

⎡

⎢

⎢

⎣

1 − 2y
2
− 2z

2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz 1 − 2x

2
− 2z

2 2yz + 2wx 0
2xz + 2wy 2yz − 2wx 1 − 2x

2
− 2y

2 0
0 0 0 1

⎤

⎥

⎥

⎦

Quaternion interpolation

• Interpolation means moving on n-D sphere

θ2

θ1

1-angle rotation can be
represented by a unit circle

(θ1,φ1)

(θ2,φ2)

2-angle rotation can be
represented by a unit sphere

Quaternion interpolation

• Moving between two points on the 4D unit
sphere

• a unit quaternion at each step - another point
on the 4D unit sphere

• move with constant angular velocity along
the great circle between the two points on the
4D unit sphere

Quaternion interpolation

Direct linear interpolation does not work

Spherical linear interpolation (SLERP)

slerp(q1,q2, u) = q1

sin((1 − u)θ)

sin θ
+ q2

sin(uθ)

sin θ

Normalize to regain unit quaternion

Linearly interpolated intermediate points are not
uniformly spaced when projected onto the circle

θ

Quaternion constraints

Cone constraint

θ

1 − cos θ

2
= y2

+ z2q =

⎡

⎢

⎢

⎣

w

x

y

z

⎤

⎥

⎥

⎦

tan (θ/2) =
qaxis

w

θ

Twist constraint

qaxis is the element of twist axis, e.g. z-axis

e.g. a cone along-x axis

Properties of quaternion

• Easily composed?

• Interpolate?

• Joint limit?

• Avoid Gimbal lock?

• So what’s bad about Quaternion?

• Rotation matrix

• Fixed angle and Euler angle

• Axis angle

• Quaternion

• Exponential map

Exponential map

• Represent orientation as a vector

• direction of the vector is the axis to rotate about

• magnitude of the vector is the angle to rotate by

• Zero vector represents the identity rotation

Properties of exponential map

• No need to re-normalize the parameters

• Fewer DOFs

• Good interpolation behavior

• Singularities exist but can be avoided

Choose a representation
• Choose the best representation for the task

• common animation input:

• joint limits:

• interpolation:

• composition:

• avoid gimbal lock:

• rendering:

axis angle, quaternion

Euler angles

orientation matrix

quaternion or orientation matrix

Euler angles, axis angle, quaternion (harder)

axis and angle, quaternion

