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Literature Review 
The Resistance is a hidden role game. Some players are spies, who have complete              
information, and need to deceive the resistance players. The remaining players are            
members of the resistance, who don’t know who the spies are, so have incomplete              
information about the game state. The resistance players need to work out who the spies               
are, so that they can make the right decisions to win the game. Without complete               
information, the game state could be any one of many possible worlds. As more information               
is gathered, epistemic logic can be used to eliminate worlds that are impossible. To do this,                
there must be a set of rules that can be used to distinguish between the possible worlds (van                  
Ditmarsch & Kooi, 2015). 
 
Deductive logic, which uses values that are either true or false, only works when those               
values have no uncertainty. Using only deductive reasoning limits the amount of useful             
information we can gather in scenarios with a high degree of uncertainty. Probability theory              
is a better framework for reasoning in the case of The Resistance , since this game involves                
a lot of uncertainty. Inductive logic is a generalisation of deductive logic, which applies              
Bayesian probability to deal with uncertainty. If a statement has a probability of 1, then that is                 
the same as something being true in deductive logic. Similarly, if a statement has a               
probability of 0, then it is false. Otherwise, statements will have a probability value between 0                
and 1 (Oaksford & Chater, 2009). 
 
Gill (2011) highlights the difference between actions and probabilities, using the example of             
the Monty Hall problem. If we only use Bayesian probability to model a scenario, this will                
predict the most likely behaviours for random opponents. However, to play optimally in a              
multi-agent scenario, each agent is going to use some strategy rather than random chance.              
The Monty Hall problem asks you for an action, not a probability. By using probabilities to                
model the problem, we are showing the likelihood of our opponent making particular             
decisions. The accuracy of our model is only as good as how accurately we model our                
opponent’s behaviour. 
 
Bayes’ theorem describes the relationship between two conditional probabilities,         (A | B)P  
and :(B | A)P  

(A | B)P =  P(B)
P(B | A) P(A)  



Cadwallader Olsker (2011) uses the example of a test for the presence of a disease. The                
accuracy of this test is more complex than a single probability value, such as 95%. Instead                
we need to consider two cases: the accuracy of the test when the disease is present, and                 
the accuracy of the test when the disease is not present. In this example, the probability of                 
the disease being present is 1%. If the disease is present, then the probability of    (disease)P             
a positive test result is 80%. If the disease is not present, then the    (positive | disease)P            
probability of a positive test result is 9.6%. To calculate ,      (positive | no disease)P      (positive)P  
we need to add up the probabilities of the test giving a positive result in each case, weighted                  
by the probability of each case occurring. 

(positive) (positive | disease) (disease) (positive | no disease) (no disease)  P = P × P + P × P  
(positive) 0.8 .01) 0.096 .99) .10304  P = ( × 0 + ( × 0 = 0  

Now, let’s use Bayes’ theorem: 

(disease | positive) (positive | disease) (disease) (positive)  P = P × P ÷ P  
(disease | positive) .8 .01 .10304 .07764  P = 0 × 0 ÷ 0 = 0  

This shows that when there’s a positive test result, there is only a 7.8% chance of the person                  
actually having the disease. The logic of Bayes’ theorem can be confusing and             
counter-intuitive. Cadwallader Olsker (2011) explains the importance of interpreting a          
problem correctly, so that the correct solution can be reached. 
 
The genetic algorithm can be used to optimise the parameters of a strategy. To do this, the                 
strategy must be parameterised. Each variation of a parameter will have an effect on how a                
strategy behaves. Lin and Ting (2011) use a representation of chromosomes, encoding the             
parameters as genes. To develop their strategy for tactical formations in the game StarCraft ,              
they used many different variations of the same strategy, each with its own unique              
chromosome. The success of each chromosome determines whether or not its genes will be              
used to produce the next generation of chromosomes. The best combinations of genes will              
be kept, and less successful genes will be eliminated. Over the course of many generations,               
the strategies will be improved towards the optimum. 

Selected Technique 
Using epistemic logic, we could create a set of rules for how to deduce knowledge about the                 
game state. However, since The Resistance has a high degree of uncertainty, it is very               
difficult to reach any definitive true or false answers. Most in-game actions, such as              
nominations, voting, and accusations, could happen if the player is a member of the              
resistance or if they are a spy. Only a mission failure can give solid information, since a                 
resistance player can’t fail a mission. Until there is some solid information, a resistance              
player using epistemic logic won’t be able to distinguish between good and bad decisions.              
Within the course of a five round game, it is unlikely that a resistance player would be able to                   
identify all of the spies before the spies achieve three failed missions. 
 
Since The Resistance involves a lot of uncertainty, it would be more appropriate for our               
strategy to work with probabilities rather than true or false values. Using probabilities won’t              



give us any solid information, but it will allow us to identify which decisions are more likely to                  
be good decisions. Because of this, we can gather some useful information even when there               
are uncertainties involved. Bayes’ theorem is a really powerful tool for resistance players,             
since it allows them to convert between different conditional probabilities. For instance, if             
they know the probability of each world being the true game state, and if they can estimate                 
the probability of a team failing in each of those worlds, then they could use Bayes’ theorem                 
to work out the overall probability of a team being successful. This would allow them to                
compare between different teams, which would help them to make decisions about            
nominations or voting. 
 
Using probabilities and Bayes’ theorem would be less useful for spy players, since the spies               
don’t have any uncertainty. On the other hand, it is a useful strategy for spies to pretend to                  
be members of the resistance. If the spies maintain the probabilities as if they are a                
resistance player, they can use this as a guide for how a resistance player would behave. If                 
they act like a resistance player whenever possible, this will limit the amount of information               
that the resistance players get, since the resistance players will be looking for suspicious              
spy-like behaviour. Of course, the spies will also have to fail as many missions as possible                
whilst they are deceiving the resistance players, so they will have to find the right balance                
between good and evil behaviour in order to win. 
 
The genetic algorithm could help to optimise a strategy. However, we must consider the              
costs and benefits of implementing the genetic algorithm. Since we’re already using Bayes’             
theorem to solve the problem, we would only need to optimise the thresholds for how               
probabilities are used to make decisions. It would take some time to implement a genetic               
algorithm, so perhaps the time would be better spent manually optimising the strategy. 

Implementation 
Firstly, we need a set of all the possible worlds. Each of these worlds is represented by a                  
string containing the names of the spies in that world. Next, we need to map each world to a                   
probability value, which gives the probability of each world existing, . Initially all the          (w)P     
worlds will have equal probabilities, given by: 

(w)P = 1
number of  worlds  

This probability value will be modified by in-game actions. Whenever the probability of a              
world reaches 0, that world has become impossible, so it can be removed from the set of all                  
worlds. 
 
When dealing with an action , we need to estimate the probability of that action occurring     a            
in each of the possible worlds, which gives . To get the overall probability of the        (a | w)P         
action occurring, , we need to add up all the probabilities of the action occurring in each  (a)P                
world, weighting each by the probability of its world existing: 



(a) (a | w ) P (w )P = ∑
 

i
P i i  

When an action occurs, we need to update all the world probabilities to include this new   a               
information. To do this, we need to calculate , the probability of each world existing        (w | a)P        
given that action. We can calculate this using Bayes’ theorem: 

(w | a)P = P(a)
P(a | w) P(w)  

Since we know that the action has occurred, we can update all of the values with      a          (w)P    
the value of for that world. We can do this update step with any type of in-game   (w | a)P                
action, including nominations, votes, mission results, and accusations. 
 
The accuracy of our probability values depends on how we calculate for each type           (a | w)P     
of action. It’s relatively straightforward to estimate for mission results, because we       (a | w)P       
only need to consider the spies on the team, and spies have perfect knowledge. It’s more                
difficult to estimate for nominations, votes, and mission results, since we’re   (a | w)P          
considering resistance players and spies at the same time. In these cases, I decided to use                
the assumption that all players have perfect knowledge. This is not a comprehensive model              
of behaviour, but it is simple to calculate and it doesn’t contradict any knowledge that a                
player would have in that world. A spy will make a decision using perfect knowledge. Any                
actions that against the optimum spy strategy will be identified as more resistance-like. As              
such, it allows us to contrast between spy-like behaviour and resistance-like behaviour. 
 
When making decisions, we need to consider each possible action we can make, and work               
out the probability of that action being a good idea. For nominations, we need to generate all                 
the possible teams, and work out for the action of that team succeeding, considering all      (a)P           
of the possible worlds. This is weighted by the probability of each world existing, so the most                 
likely worlds will have more of an effect on the value of . Using this value, a resistance            (a)P       
player can rank each possible team, and nominate the team that is most likely to succeed. 
 
A spy player needs to consider two different probability values. As with a resistance player,               
they need to consider the probability of a mission succeeding from a resistance player’s              
point of view. They also need to consider the probability of a mission failing given their                
knowledge of who the spies are. To minimise the amount of information that the resistance               
players get from the mission result, they should aim for a perfect number of fails. That is, if                  
the mission requires two fails, they should maximise the chance of exactly two spies playing               
fail cards. By multiplying these two probability values together, the team with the highest              
ranking will be a team that looks good to resistance players and has a high chance of failing. 
 
We can make voting decisions by comparing the probability of success for the nominated              
team with the average probability of success for all the possible teams. If the ratio is above a                  
certain threshold, a resistance player should approve that team. If the ratio is below a certain                
threshold, a resistance player should reject that team. If a spy is being cautious, they should                
also vote in this way. In between these two thresholds, a spy player should vote in a way                  



that is best for achieving a spy victory; if a mission has enough spies to fail, then that team                   
should be approved, otherwise the team should be rejected. 
 
In between these two thresholds, it is uncertain whether a resistance player should vote to               
reject or approve that team. In this case, the player should consider how trustworthy the               
current leader is, and compare that with future leaders. This trustworthiness measure can be              
calculated by adding up all the probabilities of worlds, , where a given player is a         (w)P        
member of the resistance. If there is a future leader who is more trustworthy than the current                 
leader, then a resistance player should reject past the current leader. 
 
Accusations can be used as a measure of how suspicious the other players think you are.                
To decide whether to make an accusation, find the probability of each player being a spy. If                 
a player’s probability is beyond a certain threshold, then accusing that player is a good idea.                
Both resistance players and spies should use the same strategy in this case. Unlike voting               
and nominations, accusations don’t affect other in-game actions, so this is a good             
opportunity for spies to pretend to be resistance players. 
 
When there are multiple spies on a mission team, and it is a good idea to fail that mission,                   
each spy needs to decide whether or not to play the fail card. It is best if there are just                    
enough fail cards to fail the mission; if there aren’t enough fail cards, then the mission won’t                 
fail and the resistance players will be closer to victory; if there are too many fail cards, the                  
resistance players get more information about who the spies are. If all spies use a random                
number generator decide whether or not to play a fail, we can maximise the chance of the                 
correct number of fails by optimising the threshold between playing a success or failure. I               
found the optimum threshold to be: 

hreshold t = number of  fails
number of  spies  

A spy will generate a random number between 0 and 1. If the number is less than the                  
threshold, then they should play the fail card. Otherwise, they should play the success card. 

Validation 
Because the agent code uses so many probability values, one of the biggest risks is floating                
point precision. To minimise this risk, the code uses the double datatype to hold probability               
values. Doubles can hold more data than floats, which allows for more floating point              
precision. Another alternative is to store probability values as fractions, with long ints holding              
the top and bottom parts of the fraction. This would ensure that the probabilities are stored                
with complete precision. However, testing showed that the numbers at the top and bottom              
parts of the fraction would frequently overflow the upper limit of the long datatype. While               
using doubles is not completely precise, there wasn’t any noticeable reduction in            
performance, so the double datatype seems adequate for this scenario. 
 
To test the performance of my agent code, I ran a tournament between the RandomAgent,               
my agent code (BayesFTW), and a version of my agent code with some of the features                
removed (BayesMinimal). BayesMinimal is the same as BayesFTW, except the world           



probabilities are only updated by mission results, and not by nominations, votes, or             
accusations. This tournament included 100 000 games of The Resistance . 
 

Name Spy Wins Spy Plays Res Wins Res Plays Win Rate Spy Win Rate Res Win Rate 
RandomAgent 51786 94322 35368 156088 0.3480452059 0.5490341596 0.2265901286 

BayesMinimal 72033 94487 46816 155589 0.4752515235 0.7623588430 0.3008953075 

BayesFTW 72637 94514 62843 155257 0.5424168538 0.7685316461 0.4047675789 
 
Both of the Bayesian agents performed significantly better than the RandomAgent, for both             
spies and resistance players. This shows that using strategy does improve the chances of              
an agent’s success. For spies, BayesFTW performed slightly better than BayesMinimal, but            
the difference was not significant. For resistance players, BayesFTW performed significantly           
better than BayesMinimal. Overall, BayesFTW was clearly the best performing agent. This            
shows that the extra features of BayesFTW made a significant improvement to its             
performance, especially for resistance players. 
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