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Abstract 

A unique behavior of humans is modifying one’s unobserva-
ble behavior based on the reaction of others for cooperation. 
We used a card game called Hanabi as an evaluation task of 
imitating human reflective intelligence with artificial intelli-
gence. Hanabi is a cooperative card game with incomplete 
information. A player cooperates with an opponent in build-
ing several card sets constructed with the same color and or-
dered numbers. However, like a blind man's bluff, each 
player sees the cards of all other players except his/her own. 
Also, communication between players is restricted to infor-
mation about the same numbers and colors, and the player is 
required to read his/his opponent's intention with the oppo-
nent's hand, estimate his/her cards with incomplete infor-
mation, and play one of them for building a set. We compared 
human play with several simulated strategies. The results in-
dicate that the strategy with feedbacks from simulated oppo-
nent's viewpoints achieves more score than other strategies.  

 Introduction of Cooperative Game     

Social Intelligence - estimating an opponent's thoughts from 

his/her behavior – is a unique function of humans. The solv-

ing process of this social intelligence is one of the interesting 

challenges for both artificial intelligence (AI) and cognitive 

science. Bryne et al. hypothesized that the human brain in-

creases mainly due to this type of social requirement as a evo-

lutionary pressure (Byrne & Whiten 1989). 

 One of the most difficult tasks for using social intelligence 

is estimating one’s own unobservable information from the 

behavior of others and to modify one's own information. This 

type of reflective behavior – using other behavior as a looking 

glass – is both a biological and psychological task. For exam-

ple, the human voice is informed by others via sound waves 

through the air, but informed by him/herself through bone 

conduction (Chen et al. 2007). In this scenario, a person can-

not observe his/her own voice directly. For improving social 
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influence from one's voice, one needs to observe others' reac-

tions and modify his/her voice. Joseph et al. also defined such 

unobservable information from oneself as a "blind spot" from 

a psychological viewpoint (Luft & Ingham 1961). 

In this study, we solved such reflective estimation tasks us-

ing a cooperative game involving incomplete information. 

We used a card game called Hanabi as a challenge task. Han-

abi is a cooperative card game. It has three unique features for 

contributing to AI and multi-agent system (MAS) studies 

compared with other card games that have been used in AI 

studies. First, it is a cooperative card game and not a battle 

card game. Every player is required to cooperate and build a 

set of five different colored fireworks (Hanabi in Japanese) 

before the cards run out. This requires the AI program to han-

dle cooperation of multiple agents. Second, every player can 

observe all other players' cards except his/her own. This does 

not require a coordinative leader and requires pure coordina-

tion between multiple agents. Finally, communication be-

tween players is prohibited except for restricted informing ac-

tions for a color or a number of opponent's cards. This allows 

the AI program to avoid handling natural language processing 

matters directly. Hanabi won the top German game award due 

to these unique features (Jahres 2013). 

We created an AI program to play Hanabi with multiple 

strategies including simulation of opponents' viewpoints with 

opponents' behavior, and evaluated how this type of reflective 

simulation contributes to earning a high score in this game.  

The paper is organized as follows. Section 2 gives back-

ground on incomplete information games involving AI and 

what challenges there are with Hanabi. Section 3 explains the 

rules of Hanabi and models. We focused on a two-player 

game in this paper. Section 4 explains several strategies for 

playing Hanabi. Section 5 evaluates these strategies and the 

results are discussed in Section 6. Section 7 explains the con-

tribution of our research, limitations, and future work, and 

Section 8 concludes our paper. 
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Related Work on Incomplete Information 

Games 

Related Trials Involving Card Games 

A game-playing agent has been a challenge from the begin-

ning of AI research  (Abramson 1989). Several two-player 

board games with perfect information, such as Checkers, 

Othello, Chess, and Go, have been used as a trials by applying 

several new algorithms (Krawiec & Szubert 2011)(Gelly et 

al. 2012). In these games, all information is observable by 

both players. An AI system just needs to handle the condition 

of the board and does not need to read a cooperator’s 

thoughts. On the other hand, card games have unobservable 

information from other players (Ganzfried & Sandholm 

2011). This is also an important field in AI. Poker is one of 

the most well-known examples, and several theoretical anal-

yses have been conducted (Billings et al. 1998)(Billings et al. 

2003). Other games including Bridge and the two-players 

version of Dou Zi Zhu (a popular game in China) have also 

been studied (Ginsberg n.d.) (Whitehouse et al. 2011). 

Unique features of Hanabi 

Compared with the abovementioned card games, Hanabi has 

three unique features that are appropriate for study in the AI 

field. First, Hanabi is a cooperative card game and not a battle 

card game. Every player in Hanabi needs to cooperate and 

play their own cards to create sets of fireworks before the 

cards run out. Second, every player can observe all of the 

other players’ cards, except his/her own. This means that 

there is no player who has an objective viewpoint. Such a con-

dition makes a task difficult because every player needs to co-

operate with others without making leaders. This is also sim-

ilar to a coordination problem in multi-agent systems with in-

complete information  (Zlotkin & Rosenschein 1991). Finally, 

communication between players is prohibited, except for de-

termining informing actions for a color or the number of co-

operator’s cards. A player can only give certain information 

about a cooperator’s cards, e.g., the color or one of the num-

bers in the player’s hand. It is also possible to use other play-

ers’ plays or discards as information. This requirement 

avoids the difficulty of handling natural language processing. 

This requirement also avoids the handling of cheap talk in 

game theory (Wärneryd 1991). To use Hanabi as a multi-

agent coordination task, we can evaluate the social ability of 

an AI for reading a cooperator’s intention by monitoring the 

cooperator’s behavior without language communication. 

Definition of Restrictions 

Two-player Rules of Hanbi 

Hanabi is played with two to five players. In this study, we 

focused only on a two-player scenario.  

 The game is played with a deck of cards consisting of the 

numbers 1-5, each of which is in five different colors. Each 

player is dealt a hand of five cards, but the catch is that they 

may not look at them. Instead, the players hold the cards 

facing their fellow players. Players must give each other 

clues and use some deduction to play their cards correctly. 

Players will need to collectively play their cards in increas-

ing order and by color. The game ends when the players 

have either completed all five sets, run out of cards in the 

draw deck, or made three errors during the game. They then 

total their score and see how close they are to a perfect score 

of 25.  

 The game comes with 50 cards that depict a fireworks ex-

plosion on the front. Each card has a number in one of five 

different colors. There are three number 1 cards, two num-

ber 2 to 4 cards, and one number 5 card in each color. The 

total cards in each color is 10 cards. The game also includes 

11 tokens (eight blue tokens and three red tokens) to track 

both clues in the game and how many mistakes the players 

have made. Figure 1 shows the cards and tokens. 

 

 
Figure 1. Components of Hanabi (in the real world). 

 
 The game play in Hanabi is simple. The 50 cards are shuf-

fled together, and each player is dealt a hand of five cards 

that they may not look at. Players must hold their cards fac-

ing outward towards their fellow players. The goal will be 

for the players to correctly play their cards in an ascending 

numerical sequence. Cards must also be played according to 

color. One player is chosen to be the starting player, and 

each player takes a turn in a clockwise manner. In each turn, 

a player can perform one of three actions. 
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Give a clue; Players start with eight clock tokens. By 

spending one of these, they may give a clue to one of their 

fellow players about the cards they hold. All clues must be 

something that you can point to (i.e., you have one yellow 

card here, or these specific three cards are 4s). You cannot 

say “you do not have any red cards.” The other caveat is that 

you must tell the player all of something. Thus, if you tell 

them that they have a red card, you must tell them each red 

card they hold.  

Discard a Card; Once the players have used up all eight 

of their clue tokens, they only way to get one back is by dis-

carding a card. A player then draws a replacement card. 

Play a Card; A player chooses a card from their hand and 

plays it to the table. If the card is a legal play, it goes into 

the corresponding pile. If there is nowhere to play the card, 

then it is discarded, and the players lose a fuse token. If they 

make three such mistakes, the game ends, and the players 

have lost.  

The game continues in this manner until either the players 

have successfully played all five colors of cards up to the 

number 5, or, more likely, the players run out of cards in the 

draw pile. At that point, the players each get one more turn, 

and the game is over. They total up the highest played card 

in each pile, and this gives them their total score. There is a 

little chart included in the game to rate how they did up to a 

perfect score of 25 points. 

Description for Card Play  

We now define the notations of several cards. 

Card names 

Each card is described by the first letter of the color and the 

number. For example, the red 4 card is denoted as R4, and 

the green 1 card is denoted as G1. Any card that has incom-

plete information, uninformed information, is denoted with 

an underline. For example, R_ means any red card, i.e., R1, 

R2, R3, R4, and R5. 

Description 

The board information is described as a pile P, trash T, deck 

D. P is a set of cards that is unobservable by both players (P 

= {Y3, W1, R2,…}). T is the set of discarded cards and is 

observable by both players (e.g., T = {R3, G2, Y1,…}). D 

is the set of numbers for each fireworks set (D = {W:0, B:1, 

Y:0, R:2, G:3}). At the start of the game, P is 50 shuffled 

cards, and T is zero. D is a set of zeroes (D = {W:0, B:0, Y:0, 

R:0, G:0}). The score is defined as the sum of D. 

 Each player has its own viewpoint for the world W (Wpl 

or Wop, where “pl” denotes the player, and “op” denotes the 

cooperator), which includes the card state C for each player 

(Cpl, Cop). C is described as several possible card sets (e.g., 

C = {R1, R2, W1, W2, G3} or {R1, R2, W1, W2, G4}). 

Player Roles 

Each player is described as a function F. The input of F is D, 

P, T, or W, and the output of F is defined as an action A (A 

= F_pl(D, P, T, W_pl)).   

What is informed by informing action 

If the cooperator gives an attribute of a card, the other cards’ 

attributes are informed by this restriction. For example, if 

one card in the player’s hand is informed as red, the possible 

color of the card is only red, and the other cards’ possible 

color is any color except red.   

Definition for playable card 

If a card has enough information to be placed on a fireworks 

set, the card is defined as a playable card. For example, if 

there is no fireworks set, and one card is informed as "1," it 

is playable if the card is any color. If there is a green fire-

works set, and the number 3 is on top, a player can play G4 

if the player has it in their hand 

Definition of discard-able card 

If a card has enough information but is not playable after the 

turn, this card is defined as a discard-able card. For example, 

if there is a red fireworks set with the number 4 on top, R1, 

R2, R3 are discard-able cards. If there is a yellow fireworks 

set with the number 5 on top, any yellow card is discard-able 

without needing information about the number. 

Definition of multiple cards 

If there is a possibility that the same card is still in the deck, 

the card is called a multiple card. For example, if the card is 

R2, and there are no unobservable cards, the card is defined 

as a multiple card because other R2 cards may be in the pile 

or cooperator's deck. 

Strategies 

In this section, we describe five computer strategies imple-

mented for playing Hanabi. 

Ideal Strategy 

In this study, we set up an ideal (cheated) strategy for Han-

abi in which both players know each other's hand. With this 

strategy, both players can play the most optimal plays. Any 

other strategies cannot overcome the score gained by this 

strategy. An informing action is only used to skip a turn. As 

a result, play and discard are the only rational actions. Each 

player plays as follows with this strategy. 

 
1. If the player has a playable card, it plays the card. 

2. If the cooperator has a playable card, the player selects 

an informing action to skip a turn. 

3. If there are no playable cards for both the player and co-

operator, the player selects a card to be discarded using the 

following steps. 

39



3.1 If the player has a discard-able card, it discards it. If not, 

go to the next step. 

3.2 If the player has multiples of a card, it discards one of 

them. If not, go to the next step. 

3.3 If the player has no card for discarding, it discards the 

highest numbered card in his/her hand. 

 

 The viewpoints of the player and cooperator are shown in 

Fig. 2. 

 

 

Figure 2. Ideal strategy’s viewpoint. 

Random strategy 

In the random strategy, the player has no information about 

its own cards. The player randomly selects informing (30%), 

discarding (40%), and playing (30%) actions. We selected 

each of these possibilities through several simulations to 

maximize the results of the random strategy. The viewpoint 

of the player is shown in Fig. 3. 

 

 

Figure 3. Random strategy's viewpoint. 

Internal-State Strategy 

 In the internal-state strategy, each player's hand is recorded. 

The player uses the internal-state strategy as follows. 

 

1. If the player has a playable card, it plays the card. 

2. If the player has a discard-able card, it discards the card. 

3. If the cooperator has a playable card, and there is an in-

formation token, the player states one of the attributes (color 

or number) of the card. 

4. If there is an information token, the player states one of 

the attributes (color or number) of a card randomly selected 

from the cooperator's hand. 

5. The player randomly selects one of its cards and discards 

it. 

 

 The viewpoint of the player is shown in Fig. 4. 

 
 

 

Figure 4. Internal-state strategy's viewpoint. 

Outer-State Strategy 

With this strategy, the player’s action is similar to the inter-

nal-state strategy, but it can remember the cooperator’s 

cards. If the player chooses to inform the cooperator about 

an attribute of a card (steps 3 and 4 in the previous subsec-

tion), the player selects information that has not yet been 

stated. The other conditions are the same as the above inter-

nal strategy. The viewpoint of player is shown in Fig. 5. 

 

 

Figure 5. Outer-state strategy’s viewpoint. 

Self-recognition Strategy 

In this strategy, each player's behavior is similar to that of 

the previous subsection's strategy, except one player esti-

mates the other's intention and simulates it before step 5. 

The estimate of the cooperator's intention is the simulated 

cooperator's viewpoint of the previous turn using all possi-

ble combinations of cards induced by the player's estimation. 

This simulation is conducted on the premise that the player 

and cooperator have the same strategy. The details of the 

simulation process are as follows. 

1. The player generates every possible combination of each 

hand (e.g., H = {{R1, R1, G2, G2, W1}, {R1, R1, G2, G2, 

W2}…}). 

2. The player creates the previous state of the board (Dpre, 

Ppre, Tpre, where "pre" denotes the previous state) and the 

cooperator's hypothetical world viewpoint of the previous 

turn (Whyp_op, where "hyp" denotes the hypothetical state) 

according to each hypothetical possible combination. 
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3. The cooperator's action is simulated by the player's al-

gorithm with a hypothetical input (Ahyp = Fpl(Dpre, Ppre, 

Tpre, Whyp_op)).  

4. If the cooperator's hypothetical action Ahyp does not 

match the real cooperator's action Areal (where "real" de-

notes the real state), the hypothetical combination is re-

moved from the hand. 

5. Step 2 is repeated until no tested combinations remain. 

 

 According to the above process, we obtain possible player 

hands. After the process, we select the most probable card x 

and the second-most probable card y. If the possibility of x 

divided by the possibility of y is greater than a, we estimate 

that the player's hand is x. Then, we repeat the outer-state 

strategy. 

 For example, if there is no fireworks set, and the cooper-

ator informs the player that its right-side card is green, the 

player simulates the cooperator's behavior on the basis of its 

own strategy. The player then determines if the card is play-

able, e.g., the card is informed as green. Then, the player 

estimates that it is a playable card (G1) and plays it. 

 

 

Figure 6. Self-recognition strategy’s viewpoint. 

Evaluation 

Simulation Setup 

We conducted computer simulations of players with the 

above five strategies. A pair with each strategy plays a game 

100 times in a simulation. We set each player’s hand as five 

cards. Owing to the limitations of computational resources 

and to prevent the generation of a large amount of data, we 

applied just one recursive simulation for the self-recognition 

strategy. In one recursive simulation, each agent estimates 

its cards from a simulation of cooperator’s previous worlds. 

However, the hypothetical cooperator does not infer the hy-

pothetical player’s two-step previous worlds. 

 A threshold needs to be determined for the self-recogni-

tion strategy. Before conducting the simulation, we simu-

lated values for a from 1 to 5 on 0.1 intervals. We found that 

the score is maximized when a = 2.5. We used this value for 

the simulation of the self-recognition strategy. 

 The hypothesis of the simulation is as follows. If the self-

recognition strategy influences the coordination of agents, 

its score will be higher than the other strategies. 

Result 

The simulation results are shown in Fig. 7. The average 

score was 24.6 (SD 1.10) with the ideal strategy, 2.20 (SD 

1.60) with the random strategy, 10.97 (SD 1.94) with the in-

ternal-state strategy, 14.53 (SD 2.24) with the outer-state 

strategy, and 15.85 (SD 2.26) with the self-recognition strat-

egy. 

 

 

Figure 7. Scores of strategies. 
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 We applied a statistical test ANOVA for both hands and 

found that all two pairs of strategies had significant differ-

ences (p < 0.01). These results suggest that the self-recogni-

tion strategy resulted in the third-best score compared with 

the ideal strategy (the best) and human (the second best). 

 Discussion  

Our results support the hypothesis stated in section 5.6 and 

suggest that the estimation of one’s hand by the self-recog-

nition strategy is better than the internal-state and outer-state 

strategies. 

 We discuss an example of a match using the self-recogni-

tion strategy and evaluate how coordination occurs in the 

strategy. When D = {W:5, R:5, B:0, Y:3, G:2}, Wpre_pl = 

{Cpre_pl = (__,_1,__,Y_,__), and Cpre_op = (Y1, R4, Y4, 

B2, Y4)} and Wpre_op = {Cpre_pl=(Y3, B1, G1, Y2, B1) 

and Cpre_op = ( __, __, _4, __, _4)}, the player told the co-

operator that the number of cooperator's first card is 1, and 

the state changed to (Cop = (_1,__,_4,__,_4)). Although this 

is not deterministic information that the hand is playable, the 

cooperator estimated with the strategy that Y1 is the most 

possible card about the first card if the player thought as the 

cooperator thought. Then, the coopeartor estimates the card 

_1 as Y1 and plays card Y1. Another example is when D = 

{W:4, R:3, B:2, Y:1, G:2}, Wpre_pl = {Cpre_pl = (__, __, 

__, __, R4), and Cpre_op = (Y5, W5, Y1, R1, G4)} and 

Wpre_op = {Cpre_pl=(W2, B1, B3, Y1, R4) and Cpre_op = 

( Y_, __, __, __, __)}, the player stated that the cooperator’s 

second card is white, and the state changed to (Cop = 

(Y_,W_,__,__,__)). This also did not explicitly state that the 

second card is playable, but the cooperator determined that 

this white is informed by player because this is playable. As 

a result, this card is played. These are the examples of com-

plementation in incomplete information using an inference 

of the cooperator’s intention. 

 The increase in score was better in the two-card-hand sce-

nario. We believe that this is because our estimation algo-

rithm is very simple. If there are more hands for each player, 

the hit rate decreases. However, if we used more modern 

methods such as Bayesian reasoning, we could have ob-

tained a more precise estimation from the player's own 

hands. The important contribution of our work is that the 

player earned a better score in the simulation of the cooper-

ator’s behavior than with the other rational strategies, even 

with very simple estimation. 

 The important point is that the appropriate action auto-

matically emerges according to the change in context with-

out implementing heuristics in the strategy innately. We 

found that there are several heuristic strategies that are ac-

quired between players by interviewing human Hanabi play-

ers. There are several tips provided by Hanabi players. For 

example, if there is only a red fireworks set, and the cooper-

ator has {Y1, G1, R2, W3, G3} cards, the player informs the 

cooperator about the 1 cards. This action suggests that they 

are playable. On the other hand, if there are four 1 cards ex-

cept blue, the information about these 1 cards suggests that 

they are not playable (and they are discard-able). If there are 

one blue and two white fireworks sets, the player informs 

the cooperator of the white card in its hand. This suggests 

that the card is playable. These heuristics are close to the 

reasoning process in the computer strategy described in the 

previous paragraphs. However, the simulation of the coop-

erator can automatically find the same solution without re-

quiring heuristics and achieves the coordination of agents. 

These results indicate the importance of the theory of mind 

(reasoning about the cooperator’s intention from the behav-

ior of the cooperator) for general solutions studied in cogni-

tive science (Hiatt & Trafton 2010)(Frank & Goodman 

2012). 

Contribution, Limitations, and Future Work 

One of our contributions is that we shows the importance of 

inference for the cooperator’s viewpoints in multi-agent co-

ordination. Our contribution is not limited to only playing a 

specific card game. Our results suggest that social intelli-

gence involving an estimation of one’s own unobservable 

information on the basis of the cooperator’s behavior be-

comes critical to increase the reward of the players. 

 However, our simulation still involved a very limited 

communication game. Because Hanabi has smaller branches 

for possible worlds, we can estimate every possible view-

point of the cooperator. These results cannot be directly ap-

plied to other communication games because other games 

require communication, and this kind of free communica-

tion greatly increases the search space for branches. 

 Although self-recognition is effective, our estimation 

method from several viewpoints is relatively simple com-

pared with our thorough simulation for viewpoints. We can 

apply a more sophisticated method for improving accuracy 

in the future. In addition, our simulation is just one recursive 

simulation. We removed the estimation of the hypothetical 

player’s viewpoint in the estimation for the hypothetical co-

operator. This type of recursive inference is important in 

joint-attention and human–agent interaction studies 

(Yamaoka et al. 2009). In future work, we plan to evaluate 

how this type of multiple recursion improves performance. 

Further, this simulation only uses one previous round for in-

ference. The use of more previous rounds as a clue for infer-

ence greatly increases the number of trees. Feedback from 

human players suggests that complex heuristics are used in 

some cases. This may be the reason for the increased score 

of a human compared with our simulated strategy. In addi-
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tion, multiple Hanabi player (3 to 5) games require more in-

ferences about the other players. In such a situation, a Monte 

Carlo method may become a viable solution (Whitehouse et 

al. 2011). 

 The important findings from our results are that theory of 

mind and self-recognition are more general intelligence 

methods for meeting multiple requirements than just learn-

ing several heuristics. If we only share the other agent’s al-

gorithm and their behavioral results, we can estimate the 

viewpoints of the other players. This is a more general 

method for different cooperating agents without sharing 

heuristics. This may indicate why we can communicate with 

others sometimes without sharing context. We are all hu-

mans and can simulate other humans.  

Conclusion 

We used a card game Hanabi as an evaluation task of imi-

tating human reflective intelligence with artificial intelli-

gence. We compared human play with complete strategy, 

the random strategy, rational strategy without opponent's 

viewpoint, rational strategy with opponent's memory, and 

rational strategy with feedbacks from simulated opponent's 

viewpoints. The results indicate that the strategy with feed-

backs achieves more score than only a rational strategy. 
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