
Learning Agents

CITS3001 Algorithms, Agents and Artificial Intelligence

2021, Semester 2Tim French
Department of Computer Science and Software Engineering
The University of Western Australia

Introduction

• We will discuss the basic structure of a learning agent
• We will discuss models of inductive learning
• We will discuss inferring decision trees as an example of a learning process
• We will discuss a methodology for assessing the performance of learning

processes and the agents derived

2

Why do we want agents to learn

• In the agents we have described so far, all “intelligence” comes from the designer
– From the algorithm design, and/or

– From the heuristics used, and/or

– From some other process used by the designer

• This has at least two significant disadvantages
– It is time-consuming for the designer

– It restricts the capabilities of the agent

• Learning agents can
– Act autonomously

– Adapt autonomously

– Deal with unknown environments, outside their (and their designer’s) experience
– Handle complex data

– Synthesise rules/patterns from large volumes of data

– Improve their own performance

• But note it is not true that without learning, an agent can never outperform its
designer

– Computers can perform some kinds of processes far better than humans can! 3

A general model of learning agents

• The basic idea is that percepts are used not just for choosing actions, but also for
improving future performance

• This requires four basic components

• A performance element
– Responsible for choosing actions that are

known to offer good outcomes
– Corresponds to the agents discussed earlier

• A learning element
– Responsible for improving the performance element
– Requires feedback on how well the agent is doing

• A critic element
– Responsible for providing feedback
– Compares outcomes with some objective performance standard from outside the agent

• A problem generator
– Responsible for generating new experience
– Requires exploration – trying unknown actions which may be sub-optimal

4

Architecture

• Consider a uber driver agent

• Performance element: you want to go into Perth? Let’s take Winthrop Avenue, it’s
worked well previously.

• Problem generator: nah, let’s try Mounts Bay Road for a change – it may be better.
• Critic element: great, it was five minutes quicker, and what a nice view!
• Learning element: yeah, in future we’ll take Mounts Bay Road.

5

The learning element

• The learning element has two (separate) goals
– Learning agents may focus on either or both, at any given time

• It wants to improve the outcome of the performance element
– How good is the action chosen?

• Secondarily (usually), it wants to improve the time performance of the performance
element

– How fast does it operate?
– This is called speedup learning

• e.g. learning a good ordering for αβ

• The design of the learning element is affected by four main issues
– The components of the performance element to be improved
– The representation of those components
– The feedback available, and its source
– The prior information available

6

The performance element

• The performance element might have many components, e.g.
– A mapping from states to actions
– A means to infer information from percepts
– Information about how the world evolves
– Information about the effects of actions
– Utility information about states
– Goals whose achievement will increase utility

• Each of these components might be improved by learning, e.g. for the uber driver
agent

– The driving instructor shouting “brake!”
– Being taught to recognise an ambulance
– Observing what effect rain has on road surfaces…
– and how that affects braking
– Observing how driving behaviour affects tips
– Learning new routes and their effects on income

• Clearly the details are highly context-dependent 7

Representing the performance element

• Representations come in many forms, e.g.
– Game-playing agents may use linear weighted polynomials
– Reasoning agents may use logical sentences and inference engines
– Belief networks may use probabilistic descriptions
– etc.

• The scope for the learning element to improve the performance element will clearly
depend on the representation used

• Again, the details will be context-dependent

8

The feedback available

• Supervised learning corresponds roughly to being taught by an expert
– The agent is given a set of example input-output pairs, i.e. problems and correct

answers
– The agent learns a general rule that captures these examples as special instances

• Reinforcement learning corresponds roughly to learning from experience
– e.g. from the result of a game, or the size of a tip
– Try something new and see if it works better!
– The agent experiments, and remembers what worked and what didn’t

• Unsupervised learning happens (usually) in the absence of feedback
– Basically means learning patterns in the input
– The most common task is clustering

• Partitioning input values into sets
– e.g. a taxi driver may learn to distinguish “good traffic days” from “bad traffic days”,

or that the freeway is usually busy at 8am

9

The prior knowledge available

• There are two “ends of the spectrum” in prior knowledge

• tabula rasa: the agent starts with an empty slate

– And starts with only “basic skills”

– Sometimes called blue sky or green field design

• The agent starts with a known good design

– And tries to fine-tune it

• Obviously tabula rasa done well ends with fine-tuning…

• This distinction captures exploration vs. exploitation
– Do we stick with (exploit) what we know, or do we try new things (explore) and hope they

work better?

– cf. teacher vs. student

• In practice, most situations fall somewhere in the middle

– And learning is usually hard

– Use background knowledge when available!

– But relying too much on prior assumptions might mean that you get out only what you

put in

10

Function approximation

• Mathematically, all components of the performance element can be described by a
function

– How the world evolves: f: state → state
– Reaching a goal: f: state → {0, 1}
– Optimising a utility: f: state → [–∞, ∞]
– Evaluating an action: f: (state, action) → [–∞, ∞]

• Thus all learning can ultimately be seen as learning a function
– All learning can be seen as function approximation

• Implementation details will vary dramatically…

• Given a set of data instances (x, f(x)), return a function h that approximates f
– h is called a hypothesis

• This task is known as pure inductive inference, or sometimes just induction

11

Inductive learning

• In general, we have to decide
– What mathematical operations are available for h (polynomials, exponentials,

trigonometrics, etc.)
– What trade-off we will tolerate between exactness and generalisability
– Whether any of the data can be dismissed as outliers

• All sets of n pts fit exactly a k-degree polynomial, k < n!
• These decisions will determine both

– The type of learning algorithm required
– The overall tractability of the problem

• Another issue is the update policy when new data arrives
– Incremental learning updates h
with each new pair
– Reinforcement relies on feedback
from using h

12

A concrete example – decision trees

• A decision tree is a representation of a Boolean function
– f: situation → {0, 1}
– Can also be thought of as defining a classification procedure, or a categorisation
– Partitions the inputs into two subsets

• The input is a description of a situation
– Abstracted by a set of properties, attributes, features, or parameters

• The output is yes or no
– Identifies the situations with a positive response

• We will consider
– Using decision trees in a performance element
– Inducing decision trees in a learning element

13

Decision trees as performance elements

• Consider the question of deciding whether to wait for a table at a restaurant
• Our approach will be to formalise the question, and to build a decision tree that

examines a situation and provides a yes/no answer
• The first (crucial!) step is to identify the relevant attributes of a situation that

influence the decision, e.g.
– Alternative nearby?
– Bar?
– Friday/Saturday?
– Hungry?
– Patrons?
– Price?
– Raining?
– Reservation?
– Type of food?
– Estimated waiting time?

• Every attribute should be discretised so that it has only a small number of possible
values

– e.g. wait-time is discretised into four possibilities: < 10 minutes, 10–30, 30–60, > 60
14

Example decision tree

• The choice of
attributes is crucial

– Without
examining the
right attributes, it
will be impossible
to make a rational
decision

– “garbage in,
garbage out”

• Sometimes this can
be the hardest task!

– cf. requirements
analysis in
software
engineering

15

Properties of decision trees as
performance elements

• Limited inputs
– Cannot handle continuous information

• Limited outputs
– Can provide only yes/no answers
– e.g. cannot choose amongst a set of restaurants

• Fully expressive wrt propositional problems
• But they can be huge

• Given n attributes:
– There will be (at least) 2n combinations of inputs
– Hence (at least) 22

n
possible functions

– And many more possible trees!
• e.g. 6 binary attributes implies 22

6
≈1019 possible functions

• A non-trivial learning task!

16

Inducing decision trees

• We will use the following terminology
– An example is a pair, with an input and an

output
• ({attributes}, value)

– A positive example is where value = true
– A negative example is where value = false
– A training set is a set of examples used for

learning

17

• In 18.3, one row corresponds to one
example

– These come from exercising the tree in 18.2
• The goal of induction is to find a decision

tree that
– Agrees with all elements of the training set,

and Is as small as possible

A trivial induction algorithm

• Build a tree that branches on each attribute in turn, until you reach a distinct leaf
for each example

• This approach has two principal problems
– The tree will be much bigger than necessary

• It does not search for patterns that summarise or simplify the training set
– The tree will be unable to provide answers for examples that aren’t in the training set

• It cannot generalise from the training set

• These problems represent two sides of the same coin
– They result from ignoring Occam’s Razor
– “the most likely hypothesis is the simplest one that is consistent with the data”
– The tree has been overfitted to the data

18

A better induction algorithm

• Finding the (guaranteed) smallest tree is intractable
– But we can use a greedy approach to find a “good” tree

• The basic idea is to always test the most important attribute first
– This will give us a set of sub-problems that we can solve recursively, each with a subset

of the data
• What do we mean by “the most important attribute”?

– The one that “makes the most difference” to the example data
– Note this implies that starting with different training examples will give a different tree

• Is this a desirable feature of the approach?

• Usually aim to
– make the whole tree as shallow as possible, or
– make the average depth as small as possible, or
– make the number of nodes as small as possible, or
– …

19

Induction

• The text emphasises separating positive and negative examples as early as
possible

– Thus minimising the size of the tree
– Thus Patrons is a good first attribute

• But an argument could also be made for Type
– It minimises the size of the largest recursive sub-problem
– Likely to minimise the depth of the tree

• This illustrates the heuristic nature of the approach

20

A recursive algorithm

• There are three possible base cases
• The remaining examples are all positive or all negative

– e.g. for all Indian restaurants, we wait!
– Stop and label the leaf either yes or no

• There are no examples left
– e.g. there are no Indian restaurants in the data
– No relevant examples are in the training set, so use the “majority vote” from the parent

node
• There are no attributes left

– i.e. there are identical rows with conflicting answers
– The data is inconsistent, so the attributes originally chosen were inadequate
– Either start again, or use majority vote

• There is one recursive case

• There are (still) both positive and negative examples
– Choose the next attribute to discriminate on, create a node and divide up the set, and

recurse 21

The derived tree

• Note that this tree is different
to the original tree (18.2)

– Despite using examples
derived from the original!

• So is it wrong?
– No – wrt the training set
– Probably – wrt unseen

examples
• But it is more concise, and it

highlights new patterns
– e.g. if there’s no table

available and you aren’t
hungry, leave!

• This process is akin to data
mining

– Identifying previously unseen
patterns in the data

22

Assessing performance

• We have seen that the derived tree
– Fits with the seen data
– Predicts the classifications of unseen data

• So to test whether it is a “good tree”, we need unseen examples to exercise it with
– But of course we need to know the answers for those unseen examples

• The usual methodology is to
– Collect a large set of examples
– Divide them into a training set and a test set
– Use the training set in the learning process
– Then use the test set to assess the resulting agent

• One question is – how do we split the data?
– More training data is good
– But more test data is also good!
– So try it out with different splits…

23

The happy graph

• Correctness on test set increases with size of training set
– Zags at the end result from lack of test data
– A common approach is 90% training, 10% test

• Basically, the shape of the happy graphs tells us that
– There is a pattern
– And the algorithm has identified it!

24

Practical instances of decision tree
learing: GASOIL

• Michie, BP, deployed 1986
• Designed complex gas-oil separation

systems
for offshore oil platforms

• Attributes included
– Relative proportions of gas, oil, and

water
– Flow rate
– Pressure
– Density
– Viscosity
– Temperature
– Susceptibility to waxing

25

• World’s largest commercial expert system
in its day
– Approx. 2,500 rules

• Building by hand would have taken 10
person-years

• Decision-tree learning was applied to a
database of existing designs
– System was developed in 100 person-

days
• Outperformed human experts

– More systematic, thinks “outside the
box”

– Said to have saved BP many millions
of dollars

Practical instances of decision tree
learning: C4.5

• Sammut et al., 1992

• Learned to fly a Cessna light plane on a flight simulator
– Learned a state-action mapping (a policy)

• Training was provided by three skilled human pilots
– Each pilot flew an assigned flight plan 30 times

– 90 flights, approx. 1,000 actions/flight

• Twenty attributes were used
– e.g. wind, altitude, throttle, ailerons, angle, etc.
– i.e. over 21,000,000 possible functions!

• The generated decision tree was fed back into the simulator
– Tree flew better than its teachers
– Using the generalisation process “cleans out” “mistakes” by the teachers

26

Learning Under Uncertainty

• Often we are required to learn in uncertain domains, where we do not have an
oracle providing the correct class for a given observation.

• A variety of approaches exist, like fuzzy logic or belief functions, but probabilistic
reasoning is the most widely used.

• Probabilities are given for events. E.g. X is “I will pass CITS3001”, may have a
probability P(X)=0.95 (95%) (the prior probability)

• We write ¬X for “not X”, X ∨Y for “X or Y”, and X ∧Y for “X and Y”
• Probabilities for different events are related: If Y is “I study for the CITS3001 exam”

then we have the probability of X given Y, P(X | Y)=0.99 (the conditional
probability).

• Conditional probabilities are defined by Bayes’ Rule
• Probabilities must obey the Kolmogorov axioms:

– 0 ≤ P(X) ≤ 1
– P(true) = 1, P(false) = 0
– P(X ∨Y) = P(X) + P(Y) – P(X ∧ Y)

27

Dependence

• Reasoning under uncertainty comes down to learning
the probabilities of events, and how the probabilities
are related.

• Given a set of events, the joint probability distribution is
the probability for combinations of events occuring.

• For n events, there are 2n different combinations to
learn. However, many of these events may be
independent (so P(X ∧ Y) = P(X).P(Y)) or conditionally
independent so X and Y may whave a common cause,
but are otherwise independent.

• Independence is a strong assumption, that makes
computing probabilities much simpler.

• Bayesian Networks organise represent events in a
directed acyclic graph, where events are only
dependent on their parents, and otherwise conditionally
idependent.

• We then just need to know the joint for nodes and their
parents. 28

Bayesian Networks

• Bayesian Networks organise represent events in a
directed acyclic graph, where events are only
dependent on their parents, and otherwise conditionally
idependent.

• We then just need to know the joint for nodes and their
parents.

• Applying Bayes’ Rule we can represent the same
information in networks with a different topology, but
the complexity will not be the same.

• In general, computing the best topology for a Bayesian
Network, or computing conditional probabilities from a
Bayesian Network are NP-Hard.

• However, could approximations of probabilities can be
approximated by using sampling algorithms, such as
Gibbs sampling, or Markov Chain Monte Carlo
methods.

29

Example: Car Diagnosis

• Bayesian Networks are
a good method to take
prior knowledge and
assumptions, and
compute conditional
probabilities to support
rational decisions.

• They can be
generalized to handle
continuous variables,
and dynamic
information.

• Bayesian Networks are
used extensively in
medical applications
for diagnosis, but often
still rely on expert
guidance.

30

