Good morning Tim French (logout) | Test validation of 4 files (1612 bytes) - exit(0).

cssubmit

This program lists all assessment deadlines in units offered by Computer Science & Software Engineering, and enables students to submit their CSSE assignments and projects over the Web. Please contact your unit coordinator about any deadlines not listed here.

When marked assignments are announced as available, you may collect them from the CSSE front office on Tuesdays and Thursdays, between 1pm and 5pm.

Submissions for CITS2401-1 "Lab 1"

- **CITS2401-1 - COMPUTER ANALYSIS AND VISUALISATION**
- **Contributes 5% to this unit's assessment.**
- **due 12:00pm Mon 15th Apr, 2013**
- **Edit details** for this deadline.
- **Validation of your recent submission:**

```
++++++++++++ Running test on FORCE_PROJECTILE.m for CITS2401-1-Lab1 +++++++++++++
Passed basic test 1): FORCE_PROJECTILE.m matches an expected filename.
Checking if it is a function ...
Passed basic test 2): Found the function keyword.
Passed basic test 3): Found correct number of input arguments.
Passed basic test 4): Found correct number of output arguments.

 TESTING...

----- Test 1 -----
Mass = 30.9kg
Horizontal displacement = 6.7m
Vertical displacement = 8.1m/s
Vertical velocity = -0.8m/s

The submitted code calculates the horizontal acceleration to be -0.05m/s^2 and the vertical acceleration to be -8.66m/s^2. The model solution calculates the horizontal acceleration to be -0.05m/s^2 and the vertical acceleration to be -8.66m/s^2.

----- Test 2 -----
Mass = 80.7kg
Horizontal displacement = 78.1m
Vertical displacement = 17.4m
Vertical velocity = -4.3m/s

The submitted code calculates the horizontal acceleration to be -28.68m/s^2 and the vertical acceleration to be 1.85m/s^2. The model solution calculates the horizontal acceleration to be -28.68m/s^2 and the vertical acceleration to be 1.85m/s^2.

----- Test 3 -----
Mass = 89.4kg
Horizontal displacement = 15.3m
Horizontal velocity = 14.3m/s
Vertical velocity = -0.7m/s

The submitted code calculates the horizontal acceleration to be -28.68m/s^2 and the vertical acceleration to be -9.49m/s^2. The model solution calculates the horizontal acceleration to be -28.68m/s^2 and the vertical acceleration to be -9.49m/s^2.

----- Test 4 -----
Mass = 46.4kg
Horizontal displacement = 85.9m
Horizontal velocity = 6.4m/s
Vertical velocity = -4.0m/s

The submitted code calculates the horizontal acceleration to be -11.79m/s^2 and the vertical acceleration to be 7.63m/s^2. The model solution calculates the horizontal acceleration to be -11.79m/s^2 and the vertical acceleration to be 7.63m/s^2.

----- Test 5 -----
Mass = 96.4kg
```
Horizontal displacement = 15.7m
Vertical displacement = 10.2m
Horizontal velocity = 12.3m/s
Vertical velocity = -2.4m/s

The submitted code calculates the horizontal acceleration to be -26.70m/s^2 and the vertical acceleration to be -6.78m/s^2.
The model solution calculates the horizontal acceleration to be -26.70m/s^2 and the vertical acceleration to be -6.78m/s^2.

100 % correct
The estimated mark for FORCE_PROJECTILE.m is 3/3

++++++++++ Running test on Answers_sheet.m for CIT52401-1-Lab1 ++++++++++++
Passed basic test 1): Answers_sheet.m matches an expected filename.
Checking if it is a function ...
Passed basic test 2): Found the function keyword.
Passed basic test 3): Found correct number of input arguments.
Passed basic test 4): Found correct number of output arguments.
This mark will be calculated at a later date

0 % marked
The estimated mark for Answers_sheet.m is 0/5

++++++++++ Running test on FORCE_PROTON.m for CIT52401-1-Lab1 ++++++++++++
Passed basic test 1): FORCE_PROTON.m matches an expected filename.
Checking if it is a function ...
Passed basic test 2): Found the function keyword.
Passed basic test 3): Found correct number of input arguments.
Passed basic test 4): Found correct number of output arguments.
 # Testing...
 #
 ------ Test 1 ------
 Horizontal velocity = 3.4e+06m/s
 Vertical velocity = 9.1e+05m/s

The submitted code calculates the horizontal acceleration to be -3.05e+13m/s^2 and the vertical acceleration to be 1.13e+14m/s^2.
The model solution calculates the horizontal acceleration to be -3.05e+13m/s^2 and the vertical acceleration to be 1.13e+14m/s^2.

------ Test 2 ------
Horizontal velocity = 1.1e+06m/s
Vertical velocity = 7.2e+05m/s

The submitted code calculates the horizontal acceleration to be -2.42e+13m/s^2 and the vertical acceleration to be 3.79e+13m/s^2.
The model solution calculates the horizontal acceleration to be -2.42e+13m/s^2 and the vertical acceleration to be 3.79e+13m/s^2.

------ Test 3 ------
Horizontal velocity = 2.0e+06m/s
Vertical velocity = 4.0e+05m/s

The submitted code calculates the horizontal acceleration to be -1.36e+14m/s^2 and the vertical acceleration to be 6.75e+13m/s^2.
The model solution calculates the horizontal acceleration to be -1.36e+14m/s^2 and the vertical acceleration to be 6.75e+13m/s^2.

------ Test 4 ------
Horizontal velocity = 3.2e+06m/s
Vertical velocity = 3.0e+05m/s

The submitted code calculates the horizontal acceleration to be -1.01e+14m/s^2 and the vertical acceleration to be 1.07e+14m/s^2.
The model solution calculates the horizontal acceleration to be -1.01e+14m/s^2 and the vertical acceleration to be 1.07e+14m/s^2.

------ Test 5 ------
Horizontal velocity = 3.2e+06m/s
Vertical velocity = 4.6e+05m/s

The submitted code calculates the horizontal acceleration to be -1.53e+14m/s^2 and the vertical acceleration to be 1.07e+14m/s^2.
The model solution calculates the horizontal acceleration to be -1.53e+14m/s^2 and the vertical acceleration to be 1.07e+14m/s^2.

100 % correct
The estimated mark for FORCE_PROTON.m is 3/3

++++++++++ Running test on MECHANICS.m for CIT52401-1-Lab1 ++++++++++++
Passed basic test 1): MECHANICS.m matches an expected filename.
Checking if it is a function ...
Passed basic test 2): Found the function keyword.
Passed basic test 3): Found correct number of input arguments.
Passed basic test: Found correct number of output arguments.

Testing...

------ Test 1 ------
Time step = 0.226 secs
Horizontal displacement = 7.3 m
Vertical displacement = 7.3 m
Horizontal velocity = 11.4 m/s
Vertical velocity = -1.8 m/s
Horizontal acceleration = -5.9 m/s²
Vertical acceleration = -7 m/s²

The submitted code calculates the new position to be (9.6, 6.5) m and the new velocity to be (10.0, -3.3) m/s.
The model solution calculates the new position to be (9.6, 6.5) m and the new velocity to be (10.0, -3.3) m/s.

------ Test 2 ------
Time step = 0.738 secs
Horizontal displacement = 16.3 m
Vertical displacement = 4.8 m
Horizontal velocity = 13.8 m/s
Vertical velocity = -1.3 m/s
Horizontal acceleration = -4.8 m/s²
Vertical acceleration = -4 m/s²

The submitted code calculates the new position to be (23.9, 1.9) m and the new velocity to be (10.3, -4.0) m/s.
The model solution calculates the new position to be (23.9, 1.9) m and the new velocity to be (10.3, -4.0) m/s.

------ Test 3 ------
Time step = 0.103 secs
Horizontal displacement = 2.0 m
Vertical displacement = 14.9 m
Horizontal velocity = 7.7 m/s
Vertical velocity = -0.8 m/s
Horizontal acceleration = -5.3 m/s²
Vertical acceleration = -1 m/s²

The submitted code calculates the new position to be (2.8, 14.8) m and the new velocity to be (7.2, -0.9) m/s.
The model solution calculates the new position to be (2.8, 14.8) m and the new velocity to be (7.2, -0.9) m/s.

------ Test 4 ------
Time step = 0.050 secs
Horizontal displacement = 55.9 m
Vertical displacement = 12.4 m
Horizontal velocity = 12.9 m/s
Vertical velocity = -1.4 m/s
Horizontal acceleration = -4.7 m/s²
Vertical acceleration = -7 m/s²

The submitted code calculates the new position to be (56.5, 12.3) m and the new velocity to be (12.7, -1.7) m/s.
The model solution calculates the new position to be (56.3, 12.3) m and the new velocity to be (12.7, -1.7) m/s.

------ Test 5 ------
Time step = 0.404 secs
Horizontal displacement = 55.7 m
Vertical displacement = 3.7 m
Horizontal velocity = 3.7 m/s
Horizontal acceleration = -6.5 m/s²
Vertical acceleration = -8 m/s²

The submitted code calculates the new position to be (55.1, 1.8) m and the new velocity to be (-1.4, -6.8) m/s.
The model solution calculates the new position to be (55.1, 1.8) m and the new velocity to be (-1.4, -6.8) m/s.

100 % correct
The estimated mark for MECHANICS.m is 4/4
The total marks of your submissions are: 10/15

Test validator: /home/www/cssubmit/CITS2401/cssubmit-script for this deadline.
List enrolled students without individual submissions.
No student submissions found.