We are asked to prove “If \(n \) is even, then \(n^2 \) is even”. (The domain is not stated, but we will assume it is the integers, \(\mathbb{Z} \).)

More formally, what we’re asked to prove is:

\[\forall n. \ (\text{Even}(n) \rightarrow \text{Even}(n^2)) \]

where \(\text{Even}(x) = \text{“}x \text{ is even}\text{”} \).

We proceed as follows.

1. Suppose we have some arbitrary integer, call it \(a \). We would like to show that \(\text{Even}(a) \rightarrow \text{Even}(a^2) \).

 (This is the first step in “for all” introduction – assume an arbitrary thing in the domain.)

1.1. To show that \(\text{Even}(a) \rightarrow \text{Even}(a^2) \), we will start by assuming that \(\text{Even}(a) \); then if we can derive \(\text{Even}(a^2) \) from that assumption, that’s enough to prove \(\text{Even}(a) \rightarrow \text{Even}(a^2) \).

1.1.1. So, assume \(\text{Even}(a) \).

 (This is the first step in a direct proof. If we want to prove \(P \rightarrow Q \), we assume \(P \) and show that we can derive \(Q \).)

1.1.2. If \(\text{Even}(a) \) is true (i.e., \(a \) is even), that means it must be two times some number.
(This is the definition of “even”: \(\text{Even}(n) = \exists k. (2k = n) \). This is something mathematicians just take for granted, barely bothering to spell out, but we do so here.)

Let’s call that number \(b \).

(Existential elimination. We’ve used a new name, \(b \), for the number we know must exist, which is half of \(a \).)

1.1.3. We know that \(a = 2b \). Therefore, \(a^2 = (2b)^2 \).

(An equivalence from mathematics. If we know two things are equal, we can square both sides, and the results will also be equal.)

And therefore \(a^2 = 4b^2 \).

(Another equivalence from mathematics. \((xy)^t = x^t y^t \).)

1.1.4. Let \(c = 2b^2 \).

(This is defining something. It is purely for convenience. We are defining \(c \) as \(2b^2 \), so we can make our proof shorter and clearer.)

Then

\[
a^2 = 4b^2 = 2c
\]

1.1.5. That means that \(2c \) is even.

(From the definition of “even”. Since there exists a number \(c \) which is half of \(2c \), it follows that \(\text{Even}(2c) \).)

1.1.6. \(a^2 = 2c \), and we just showed that \(2c \) is even, so that means \(a^2 \) is even.

(From the way mathematical equality works. If \(x = y \), and something is true of \(x \), it must be true of \(y \).)

1.2. By assuming \(\text{Even}(a) \), we were able to infer \(\text{Even}(a^2) \). Therefore \(\text{Even}(a) \to \text{Even}(a^2) \).

(Steps 1.1.1 through 1.1.6 are where we inferred \(\text{Even}(a^2) \) from \(\text{Even}(a) \). So now we consider \(\text{Even}(a) \to \text{Even}(a^2) \) proved.)
1.3. Therefore, we’ve proved that, for an arbitrary integer a, $\text{Even}(a) \rightarrow \text{Even}(a^2)$.

(We are now finished with the steps needed for “for all” introduction.)

2. Given an arbitrary integer a, we were able to show $\text{Even}(a) \rightarrow \text{Even}(a^2)$.

Therefore, $\forall n. (\text{Even}(n) \rightarrow \text{Even}(n^2))$;

which is what we were asked to prove.

(Our proof is done. We end a proof with either the abbreviation “QED” – roughly, “which is what we set out to prove”, in Latin – or with a box, usually filled in, called a “Halmos block” or “tombstone”, and introduced by Paul Halmos – https://en.wikipedia.org/wiki/Tombstone_(typography).)

Other comments: In many mathematical proofs, the author might say something like “Let n be an arbitrary integer”, assuming that the reader can work out from context whether n is a variable or has become a constant – a named thing, which we can use like any other constant.

Here, we stick to the convention from week 2 that constants come from the start of the alphabet (a, b, c etc.) and variables are m through z. We loosened the requirement that predicates are named with capital letters, and used $\text{Even}(x)$ to refer to the property of being even. We could’ve abbreviated it as, say, E or P, but then the proofs become harder to read. In general, the more formal an argument is, usually the less readable (by humans).