
CITS2200 Data Structures and Algorithms

Topic 1

Welcome

Dr. Tim French

Room 2.14
tim@csse.uwa.edu.au

A unit about space, time, and integrity .

c© Cara MacNish & Tim French CITS2200 Welcome Slide 1

Handbook Description

At the core of most computer applications is the storage and retrieval of information.
The way that the stored data is structured has a strong impact on what can be
retrieved , how quickly it can be retrieved , and how much space it occupies. The
use of generic structures, or abstract data types (ADTs), to encapsulate the data
also allows software engineering principles of independent modification, extension
and reuse.

This unit studies the specification, implementations and time and space performance
of a range of commonly-used ADTs and corresponding algorithms in an object-
oriented setting. The aim is to provide students with the background needed both
to implement their own ADTs where necessary, and to select and use appropriate
ADTs from object-oriented libraries where suitable.

c© Cara MacNish & Tim French CITS2200 Welcome Slide 2

This Lecture

• Introductory information — teaching sessions, teaching staff, assessment, lab
rules, unit software, on-line resources, teaching and learning agreement

• Introduction to ADT’s

Wikipedia disambiguation:

1. Abstract data type: a computer programming term

2. Asynchronous data transfer: a method of transferring data

3. Automatic double tracking: an audio recording technology invented for
The Beatles

4. American Discovery Trail: a coast-to-coast hiking trail across the mid-tier
of the United States.

5. Average Daily Traffic: to show the volume of traffic on a road in trans-
portation planning

6. Active Denial Technology: also known as the pain ray

c© Cara MacNish & Tim French CITS2200 Welcome Slide 3

Timetable

• Lectures

– 2pm-3pm Tuesdays, Austen Lecture Theatre

– 10pm-11am Fridays, Engineering Lecture Theatre 2

• Tutorials

– 2pm-3pm Thursdays, Engineering Lecture Theatre 2

• Laboratories

– 10am-12pm Thursdays, CSSE Lab 2.01

– 12pm-2pm Thursdays, CSSE Lab 2.01

– 3pm-5pm Thursdays, CSSE Lab 2.01

– Only the first hour of each lab is supervised

• Consultation

– Tim: 1pm-2pm Thursdays, CSSE Room 2.14

c© Cara MacNish & Tim French CITS2200 Welcome Slide 4



Help Forum

Aside from the aforementioned activities, you may also get help via the help2200
electronic forum — a public discussion board for all queries relating to the unit.

Assessment

Assessment Date % of Final Mark
Laboratory work Selected weeks, starting Week 4 10%
Mid-semester test Tuesday, Week 8 10%
Project Weeks 10-13 20%
Final examination June examination period 60%

References

Cara MacNish & Tim French, Data Structures and Algorithms Notes, 2008.

c© Cara MacNish & Tim French CITS2200 Welcome Slide 5

Further Reading

There are many different books on the subject of data structures as well as books
on the subject of Java, including some which combine the two. A few examples of
books worth looking at include:

Kenneth Lambert and Martin Osborne, Java: A Framework for Program Design
and Data Structures, 2nd Ed, Thomson, 2004 (previous textbook).

Thomas Cormen, Charles Leiserson, Ronald Rivest and Clifford Stein, Introduction
to Algorithms, 3rd Ed, MIT Press, 2009 (CITS3210 textbook).

Sartaj Sahni, Data Structures, Algorithms, and Applications in Java, McGraw Hill,
2000.

Mark Weiss, Data Structures and Problem Solving using Java, Addison Wesley,
1998.

Mark Weiss, Data Structures and Algorithm Analysis in Java, Addison Wesley, 1999.

Adam Drozdek, Data Structures and Algorithms in Java, Thomson, 2005.
c© Cara MacNish & Tim French CITS2200 Welcome Slide 6

Michael Gooodrich and Roberto Tamassia, Data Structures & Algorithms in Java,
Wiley, 1998.

Robert Lafore, Data Structures and Algorithms in Java, Wiley, 2005.

Janet Prichard and Frank Carrano, Data Abstraction & Problem Solving with Java:
Walls & Mirrors, 3rd Ed, Addison Wesley, 2011.

c© Cara MacNish & Tim French CITS2200 Welcome Slide 7

Topics Of Study

We will study the following topics this semester:

1. Introduction 2. Java Revision
3. Recursive Data Structures 4. Abstract Data Types
5. Queues and Stacks 6. Complexity Analysis
7. Objects and Iterators 8. Lists
9. Maps and Binary Search 10. Trees
11. Sets, Tables, and Dictionaries 12. Priority Queues
13. Hash Tables 14. Revision

c© Cara MacNish & Tim French CITS2200 Welcome Slide 8



What You Should Do This Week

1. Get set up to use the School’s Computer Systems:
https://secure.csse.uwa.edu.au/run/csentry?pw1=yes

2. Begin to familiarise yourself with the Unit’s web site.

3. Have a go at An Introduction to MacOSX and the first labsheet.

4. Start brushing up your Java in preparation.

Laboratory and tutorial classes start Thursday, Week 2.

c© Cara MacNish & Tim French CITS2200 Welcome Slide 9 c© Cara MacNish & Tim French CITS2200 Welcome Slide 10

c© Cara MacNish & Tim French CITS2200 Welcome Slide 11 c© Cara MacNish & Tim French CITS2200 Welcome Slide 12



CITS2200 Data Structures and Algorithms

Topic 1

Introduction

•Why study data structures?

• Collections, abstract data types (ADTs), and algorithm analysis

•More on ADTs

•What’s ahead?

Reading: Lambert and Osborne, Sections 1.1–1.6
c© Cara MacNish & Tim French CITS2200 Introduction Slide 1

1. What are Data Structures?

• Data structures are software
artifacts that allow data to
be stored, organized and ac-
cessed.

• They are more high-level than
computer memory (hardware)
and lower-level than databases
and spreadsheets (which asso-
ciate meta-data and meaning
to the stored data).

• Ultimately data structures
have two core functions: put
stuff in, and take stuff out.

c© Cara MacNish & Tim French CITS2200 Introduction Slide 2

Why?

• software is complex

— more than any other man made system

— even more so in today’s highly interconnected world

• software is fragile

— smallest logical error can cause entire systems to crash

• neither you, nor your software, will work in a vacuum

• the world is unpredictable

• clients are unpredictable!

Software must be correct, efficient, easy to maintain, and reusable.

c© Cara MacNish & Tim French CITS2200 Introduction Slide 3

2. What will we Study?

2.1 Collections

. . . as name suggests, hold a bunch of things. . .

“nearly every nontrivial piece of software involves the use of collections”

Seen arrays — others include queues, stacks, lists, trees, maps, sets, tables. . .

A

E

B

A

D

C

A B C D E

B

C

D

F

E

c© Cara MacNish & Tim French CITS2200 Introduction Slide 4



Why so many?

Space efficiency

Time efficiency:

• store (add to collection)

• search (find an object)

• retrieve (read information)

• remove or replace

• clone (make a copy)

c© Cara MacNish & Tim French CITS2200 Introduction Slide 5

2.2 Abstract Data Types

Allow user to abstract away from implementation detail.

Consider the statement: I put my lunch in my bag and went to Uni.

What is meant by the term bag in this context?

Most likely it is a backpack, or satchel, but it could also be a hand bag, shopping
bag, sleeping bag, body bag . . . (but probably not a bean bag).

It doesn’t actually matter. To parse the statement above, we simply understand
that a bag is something that we can

1. put things in,

2. carry places, and

3. take things out.

Such a specification is an Abstract Data Type.
c© Cara MacNish & Tim French CITS2200 Introduction Slide 6

2.3 Algorithm Analysis

We will consider a number of alternative implementations for each ADT.

Which is best?

Simplicity and Clarity

All things being equal we prefer simplicity, but they rarely are. . .

Space Efficiency

• space occupied by data — overheads

• space required by algorithm (eg recursion)

— can it blow out?

c© Cara MacNish & Tim French CITS2200 Introduction Slide 7

Time Efficiency

Time performance of algorithms can vary greatly.

Example: Finding a word in the dictionary

Algorithm 1:

• Look through each word in turn until you find a match.

Algorithm 2:

• go to half way point

• compare your word with the word found

• if < repeat on earlier half

else > repeat on later half

c© Cara MacNish & Tim French CITS2200 Introduction Slide 8



Performance

Algorithm 1 (exhaustive search) proportional to n/2

Algorithm 2 (binary search) proportional to log n

number of Algorithm 1 Algorithm 2
words max. comparisons max. comparisons
10 10 4
100 100 7
1000 1000 10
10000 10000 14
100000 100000 17
1000000 1000000 20

c© Cara MacNish & Tim French CITS2200 Introduction Slide 9

2.4 History

The evolution of programming

machine code
↓

assembler
↓

high-level languages (basic, fortran, . . . )
↙ ↘

declarative programming procedural programming
(logic, functional, . . . ) (pascal, C, . . . )

↓
object-oriented programming

↓
component-oriented programming . . . ?

agent-oriented programming . . . ?

c© Cara MacNish & Tim French CITS2200 Introduction Slide 10

• machine code: simple instructions; simple data (1’s and 0’s)

• assembler: mnemonics and variables; high-level constructs: instructions, data
types (ints, chars etc);

• procedural: away from sequences to blocks of code; more structured data (records
etc);

• declarative: what, not how;

• Object-oriented: “autonomous” objects or data-types; access through an inter-
face consisting of operations (create, add-to, read, destroy); don’t know or care
about internal workings, but passive;

• agents: more autonomous, more active; may have intentions and desires; may
be able to initiate communications themselves etc,

c© Cara MacNish & Tim French CITS2200 Introduction Slide 11

2.5 ADTs and Java

Object-oriented programming was originally based around the concept of abstract
data types.

Java classes are ideal for implementing ADTs.

ADTs require:

• Some references (variables) for holding the data

(usually hidden from the user)

• Some operations that can be performed on the data

(available to the user)

c© Cara MacNish & Tim French CITS2200 Introduction Slide 12



A class in Java has the general structure. . .

class declaration

variable declarations // data held
.
.
.

method declarations // operations on the data
.
.
.

c© Cara MacNish & Tim French CITS2200 Introduction Slide 13

2.6 Information Hiding

• Variables can be made private

— no access by users

•Methods can be made public

— used to create and manipulate data structure

This encapsulation is good programming practice

— can change

• the way the data is stored

• the way the methods are implemented

without changing the (external) functionality .

c© Cara MacNish & Tim French CITS2200 Introduction Slide 14

Example: A Matrix Class

public class Matrix {

private int[][] matrixArray;

public Matrix (int rows, int columns) {
matrixArray = new int[rows][columns];
for (int i=0; i<rows; i++)

for (int j=0; j<columns; j++)
matrixArray[i][j] = 0;

}

c© Cara MacNish & Tim French CITS2200 Introduction Slide 15

public void set (int i, int j, int value) {
matrixArray[i][j]=value;

}

public int get (int i, int j) {return matrixArray[i][j];}

public void transpose () {
int rows = matrixArray.length;
int columns = matrixArray[0].length;
int[][] temp = new int[columns][rows];
for (int i=0; i<rows; i++)

for (int j=0; j<columns; j++)
temp[j][i] = matrixArray[i][j];

matrixArray = temp;
}

c© Cara MacNish & Tim French CITS2200 Introduction Slide 16



Q: What is the time performance of transpose()?

For a matrix with n rows and m columns, how many (array access) operations are
needed?

Can you think of a more efficient implementation? One that doesn’t move any
data?

c© Cara MacNish & Tim French CITS2200 Introduction Slide 17

public class MatrixReloaded {

private int[][] matrixArray;
private boolean isTransposed;

public MatrixReloaded (int rows, int columns) {
matrixArray = new int[rows][columns];
for (int i=0; i<rows; i++)

for (int j=0; j<columns; j++)
matrixArray[i][j] = 0;

isTransposed = false;
}

c© Cara MacNish & Tim French CITS2200 Introduction Slide 18

public void set (int i, int j, int value) {

}

public int get (int i, int j) {

}

public void transpose () {

}
}
c© Cara MacNish & Tim French CITS2200 Introduction Slide 19

What is the time performance of transpose()?

Does it depend on the size of the array?

How do the changes affect the user’s program?

c© Cara MacNish & Tim French CITS2200 Introduction Slide 20



2.7 Advantages of ADTs

• modularity — independent development, re-use, portability, maintainability, up-
grading, etc

• delay decisions about final implementation

• separate concerns of application and data structure design

• information hiding (encapsulation) — access by well-defined interface

Also other OO benefits like:

• polymorphism — same operation can be applied to different types

• inheritance — subclasses adopt from parent classes

c© Cara MacNish & Tim French CITS2200 Introduction Slide 21

3. What’s Ahead?

Specifying, designing, implementing, analysing, and selecting ADTs for collections.

• what data structures are most appropriate for what kinds of tasks

• what choices are available for representing ADTs and what are the trade-offs

– time efficiency

– space efficiency

– flexibility/constraints — bounded vs unbounded etc

c© Cara MacNish & Tim French CITS2200 Introduction Slide 22

3.1 Structure of the Course

Part 1 Foundations, Analysis, and Implementations.

• Introduction
• Java concepts

• Review of recursion and introduction to recursive data structures

• Data abstraction and ADT specification

• Examples of ADTs — Stacks, Queues, and Lists

• Performance analysis for data structures

• Objects, Iterators, and Generics

Part 2 Practical Data Structures

•Maps

• Trees
• Priority Queues
• Sets, Tables, and Dictionaries

• Hash Tables

c© Cara MacNish & Tim French CITS2200 Introduction Slide 23 c© Cara MacNish & Tim French CITS2200 Introduction Slide 24



CITS2200 Data Structures and Algorithms

Topic 2

Java Primer

• Review of Java basics

• Primitive vs Reference Types

• Classes and Objects

• Class Hierarchies

• Interfaces

• Exceptions

Reading: Lambert and Osborne, Appendix A & Sections 1.2 and 2.1–2.7
c© Cara MacNish & Tim French CITS2200 Java Primer Slide 1

1. Review of Java Basics

1.1 Primitive Data Types

Type default value size range
byte 0 8 bits −128 to 127
short 0 16 bits −215 to 215 − 1
int 0 32 bits −231 to 231 − 1
long 0L 64 bits −263 to 263 − 1
float 0.0f 32 bits ?
double 0.0d 64 bits ?
char ’\u0000’ 16 bits 0− 216

boolean false ? {true, false}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 2

1.2 Local Variables

Scope: block in which defined

for (int i=0; i<4; i++) {
// do something with i
}

System.out.println(i);

Result?

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 3

1.3 Expressions

Built from variables, values, and operators.

arithmetic: +, -, *, /, %,...

logical: &&, ||, !,...

relational: =, !=, <, >, <=, >=,...
==, !=, equals
instanceOf

ternary: ? (e.g. x > 0 ? x : -x)

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 4



1.4 Control Statements

if and if-else

if (<boolean expression>)
<statement>

if (<boolean expression>)
<statement>

else
<statement>

where <statement> is a single or compound statement.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 5

while, do-while, and for

while (<boolean expression>)
<statement>

do
<statement>

while (<boolean expression>)

for (<initialiser list>; <termination list>; <update list>)
<statement>

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 6

Example

for (int i=0; i<4; i++) System.out.println(i);

0
1
2
3

for (String s=""; !s.equals("aaaa"); s=s+"a")
System.out.println(s.length());

In Java 5 we also have an enhanced for loop:

int[] array = {0,2,4};
for (int i : array)
System.out.println("i is: " + i);

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 7

Arrays

Declaration

<type>[] <name>;
<type>[]...[] <name>;

Instantiation

<name> = new <type>[<int-exp>];
<name> = new <type>[<int-exp>]...[<int-exp>];

Example

int[][] matrixArray;

matrixArray = new int[rows][columns];

int[] array = {0,2,4};

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 8



1.5 Methods

Methods have the form (ignoring access modifiers for the moment)

<return type> <name> (<parameter list>) {
<local data declarations and statements>

}

Example

void set (int i, int j, int value) {
matrixArray[i][j]=value;

}

int get (int i, int j) {return matrixArray[i][j];}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 9

Parameters are passed by value:

// a method...
void increment (int i) {i++;}

// some code that calls it...
i=7;
increment(i);
System.out.println(i);

Result?

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 10

2. Primitive Types vs Reference Types

Primitive types

• fixed size

• size doesn’t change with reassignment

⇒ store value alongside variable name

Reference types (eg. Arrays, Strings, Objects)

• size may not be known in advance

• size may change with reassignment

⇒ store address alongside variable name

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 11

Object
Fieldsb

i
15

Object b = new Object();

integer i = 15;

The variable holds a pointer or reference to the object’s data

⇒ reference types

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 12



int[] a = {0,1,2,3};
int[] b = a;
b[0]++;
System.out.println(a[0]);

Result?

// a method...
void incrementAll (int[] a) {
for (int i=0; i<a.length; i++) a[i]++;

}

// some code that calls it...
int[] b = {0,1,2,3};
incrementAll(b);
System.out.println(b[0]);

Result?

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 13

3. Classes and Objects

3.1 What are they?

Aside from a few built-in types (arrays, strings, etc) all reference types are defined
by a class.

A class is a chunk of software that defines a type, its attributes or instance variables
(also known as member variables), and its methods. . .

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 14

class Box {

// instance variables
double width, length, height;

// constructor method
Box (double w, double l, double h) {
width = w;
length = l;
height = h;

}

// additional method
double volume () {return width * length * height;}

}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 15

3.2 Constructors

The runtime engine creates an object or instance of the class each time the new
keyword is executed:

Box squareBox, rectangularBox;
...
squareBox = new Box(20,20,20);
rectangularBox = new Box(20,30,10);

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 16



3.3 Different Kinds of Methods

constructor— tells the runtime engine how to initialise the object

accessor— returns information about an object’s state without modifying the
object

mutator— changes the object’s state

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 17

3.4 Packages

A collection of related classes. E.g. java.io

In Java:

• must be in same directory

• directory name matches package name

Specifying your own package

package myMaths;

class Matrix {
...

If you don’t specify a package Java will make a default package from all classes in
the directory.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 18

Using someone else’s package

package myMaths;
import java.io.*;

class Matrix {
...

Note that java.lang.* is automatically imported.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 19

3.5 Access Modifiers

Specify access to classes, variables, and methods.

public— accessible by all

private— access restricted to within class

(none)— access restricted to within package

protected— access to package and subclasses

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 20



3.6 The static Keyword

Used for methods and variables in classes that don’t create objects, or for variables
shared by all instances of a class.

Example:

public class MatrixTest {

static Matrix m;

public static void main (String[] args) {
m = new Matrix(2,2);
m.set(0,0,1);
...

Called class variables and class methods.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 21

Also used for “constants”.

Example:

public class Matrix {

static final int MAX_SIZE=100;

private int[][] matrixArray;
...

Keyword final means the value cannot be changed at runtime.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 22

4. Class Hierarchies

Classes can be built from, or extend other classes.

Example:

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 23

public class Shape {

private double xPos, yPos;

public void moveTo (double xLoc, double yLoc) {
xPos = xLoc;
yPos = yLoc;

}

...
}

(More detail: see Lambert and Osborne, Section 2.5)

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 24



public class Circle extends Shape {

private double radius;

public double area () {
return Math.PI * radius * radius;

}
}

While we will not be using hierarchies extensively in this unit, we will be using some
very important features of them...

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 25

1. Any superclass reference (variable) can hold and access a subclass object.

Example:

public class ShapeTest {

public static void main (String[] args) {
Shape sh; // declare reference of type Shape
sh = new Circle(); // hold a Circle object in sh
sh.moveTo(2.0,3.0); // access a Shape method
double a=sh.area(); // access a Circle method
...

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 26

2. All Java classes are (automatically) subclasses of Object

Example:

Object holdsAnything;
holdsAnything = new Circle();
holdsAnything = new Rectangle();
holdsAnything = new Shape();

Example:

Object[] arrayOfAnythings = new Object[10];
arrayOfAnythings[0] = new Circle();
arrayOfAnythings[1] = new Rectangle();
arrayOfAnythings[2] = new Shape();

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 27

Java provides wrappers for all primitives to allow them to be treated as Objects:

⇒ Character, Boolean, Integer, Float, ...

See the Java API for details.

Note: A new feature in Java 1.5 is autoboxing — automatic wrapping and unwrap-
ping of primitives.

⇒ Compile time feature — doesn’t change what is “really” happening.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 28



4.1 Casting

While a superclass variable can be assigned a subclass object, a subclass variable
cannot be assigned an object held in a superclass, even if that object is a subclass
object.

Example:

Object o1 = new Object(); // OK
Object o2 = new Character(’a’); // OK
Character c1 = new Character(’a’); // OK
Character c2 = new Object(); // Error

o1 = c1; // OK
c1 = o1; // Error

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 29

In the last statement, even though o1 is now “holding” something that was created
as a Character, its reference (ie its class) is Object.

To get the “Character” back, we have to cast it back down the hierarchy:

o1 = c1; // OK
c1 = (Character) o1; // OK - casted back to Character

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 30

4.2 Object Oriented Programming in Java

Some object oriented features worth remembering are:

• Abstraction: the ability to treat different types of object as a common type.

• Polymorphism: how one method can change its behavior in different classes.

• Inheritance: reusing methods and variables from super classes.

• Encapsulation: information hiding, and containing other classes.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 31

To demonstrate these properties, let’s reconsider the Shape example. This time,
we first define a class Point...

public class Point {

private double xPos, yPos;

public Point(double x, double y){
xPos = x;
yPos = y;

}

public void moveTo (double xLoc, double yLoc) {
xPos = xLoc;
yPos = yLoc;

}
}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 32



...and use Point to define Shape. This is encapsulation.

public abstract class Shape {

private Point p;

public Shape(double x, double y) {
p = new Point(x,y);

}

public void moveTo (double xLoc, double yLoc) {
p.moveTo(xLoc, yLoc)

}

public double area(); //an abstract method - more later
}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 33

Circle inherits from Shape...

public class Circle extends Shape {

private double radius;

public Circle(double x, double y, double radius) {
super(x,y);
this.radius = radius;

}

public double area() {
return Math.PI * radius * radius;

}
}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 34

as does Rectangle. This demonstrates inheritance.

public class Rectangle extends Shape {

private double height;
private double width;

public Rectangle(double x, double y, double height, double width) {
super(x,y);
this.height = height;
this.width = width;

}

public double area() {
return width * height;

}
}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 35

We can now treat Rectangles and Circles as the more general type Shape:

Example:

public class ShapeTest {

public static void main (String[] args) {
Shape[] sA = new Shape[2];
sA[0] = new Circle(1,1,1);
sA[1] = new Rectangle(1,1,1,1); // This is abstraction
for(int i = 0; i < 2; i++)
sA[i].moveTo(0,0);

int totArea = 0;
for(int i = 0; i < 2; i++)

totArea += sA[i].area(); // This is polymorphism
}

}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 36



Note:

•We did not need to specify how a Shape’s area is calculated. This means that
we are never able to construct just a Shape.

•We chose to encapsulate a Point, rather than inherit from it (a shape is not a
point). Inheritance should be used sparingly. Always consider composition first.

• Once Circles and Rectangles can be treated as shapes we can have an array
that contains both.

• The method area() was different for both shapes, but we did not need to cast.
The Java virtual machine will determine which method is called.

• A good example of inheritance in the API is java.awt (e.g., a Window is a
Container which is a Component which is an Object). However, in general
inheritance hierarchies should be fairly shallow.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 37

5. Interfaces and Abstract Classes

An interface:

• looks much like a class, but uses the keyword interface

• contains a list of method headers — name, list of parameters, return type (and
exceptions)

• no method contents (they are called abstract, but abstract classes may have
some methods specified)

• can only have constant variables declared

• no public/private necessary — they are implicitly public

• can implement multiple interfaces

Effectively, interfaces present all the OO advantages above, except inheritance.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 38

Example:

public interface Matrix {

public void set (int i, int j, int value);

public int get (int i, int j);

public void transpose ();
}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 39

Classes can implement an interface:

Implementation 1:

public class MatrixReloaded implements Matrix {
private int[][] matrixArray;
public void transpose () {
// do it one way

}
...

Implementation 2:

public class MatrixRevolutions implements Matrix {
private int[][] somethingDifferent;
public void transpose () {
// do it yet another way

}

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 40



Why use interfaces?

1. Can be used like a superclass:

Example:

Matrix[] myMatrixHolder = new Matrix[10];
myMatrixHolder[0] = new MatrixReloaded(2,2);
myMatrixHolder[1] = new MatrixRevolutions(20,20);
...
myMatrixHolder[0] = myMatrixHolder[1];

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 41

2. Specifies the methods that any implementation must implement.

Example:

Matrix[] myMatrixHolder = new Matrix[10];
myMatrixHolder[0] = new MatrixReloaded(2,2);
myMatrixHolder[1] = new MatrixRevolutions(20,20);
...
for (int i=0; i<10; i++)
myMatrixHolder[i].transpose();

Note: this doesn’t mean the methods are implemented correctly.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 42

This is an important software engineering facility

• follows on from Information Hiding in Topic 1

— allows independent development and maintenance of libraries and programs
that use them

• will be used extensively in this unit to specify ADTs

• also used to add common functionality to all objects, eg Serializable, Cloneable

More examples — see the Java API

eg. the Collection interface, also Runnable, Throwable, Iterable, and List.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 43

6. Exceptions

• special built-in classes

• used by Java to determine what to do when something goes wrong

• thrown by the Java virtual machine (JVM)

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 44



Example program

int[] myArray = {0,1,2,3};
System.out.println("The last number is:");
System.out.println(myArray[4]);

Output

The last number is:
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 4
at Test.main(Test.java:31)

Process Test exited abnormally with code 1

See the Java API for ArrayIndexOutOfBoundsException.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 45

We can throw exceptions ourselves.

if (<condition>)
throw new <exception type> (<message string>);

Example:

double squareRoot (double x) {
if (x < 0)

throw new ArithmeticException("Can’t find square root
of -ve number.");

else {
// calculate and return result

}
}

Have a look for ArithmeticException in the Java API.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 46

Two types of exceptions:

checked— most Java exceptions

— must be caught by the method, or passed (thrown) to the calling method

unchecked— RuntimeException and its subclasses

— don’t need to be handled by programmer (JVM will halt)

To catch an exception, we use the code:

try {
codeThatThrowsException();

}
catch(Exception e) {
codeThatDealsWithException(e);

}

For simplicity, we will primarily use unchecked exceptions in this unit.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 47

Compiling and running Java

There are various ways to compile and run Java, but the command line is the most
ubiquitous. The command:

> javac myClass.java

will create the file myClass.class in the current directory. The command:

> java myClass

will execute the main method of the class myClass.

c© Cara MacNish & Tim French CITS2200 Java Primer Slide 48



CITS2200 Data Structures and Algorithms

Topic 3

Recursive Data Structures and Linked Lists

• Review of recursion: mathematical functions

• Recursive data structures: lists

• Implementing linked lists in Java

• Java and pointers

• Trees

Reading: Lambert and Osborne, Sections 10.1 and 5.3–5.4
c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 1

1. Recursion

Powerful technique for solving problems which can be expressed in terms of smaller
problems of the same kind.

eg. Towers of Hanoi

Aim: move all disks to the middle peg, moving one disk at a time, without ever
putting a larger disk on a smaller one.

Exercise: Provide a recursive strategy for solving the Towers of Hanoi for arbitrary
numbers of disks.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 2

The Towers of Hanoi is also a good example of computational explosion.

It is alleged that the priests of Hanoi attempted to solve this puzzle with 64 disks.
Even if they were able to move one hundred disks every second, this would have
taken them more than 5,000,000,000 years!

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 3

1.1 Example: Common Mathematical Functions

Start with just increment and decrement. . .

// Class for doing recursive maths. Assumes all integers
// are non-negative (for simplicity no checks are made).

public class RMaths {

// method to increment an integer
public static int increment(int i) {return i + 1;}

// method to decrement an integer
public static int decrement(int i) {return i - 1;}

// more methods to come here...

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 4



Note: All methods are:

• public — any program can access (use) the methods

• static — methods belong to the class (class methods), rather than objects
(instances) of that class

In fact, we are not using objects here at all.

increment and decrement take int arguments and return ints.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 5

They are “called” by commands of the form RMaths.increment(4)

— that is, the method increment belonging to the class RMaths.

public class RMathsTest {

// simple method for testing RMaths
public static void main(String[] args) {
System.out.println(RMaths.increment(4));

}
}

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 6

Addition: express what it means to add something to y in terms of adding some-
thing to y − 1 (the decrement of y)

x + y = (x + 1) + (y − 1)

/*
* add two integers
*/
public static int add(int x, int y) {
if (y == 0) return x;
else return add(increment(x), decrement(y));

}

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 7

Multiplication

x× y = x + (x× (y − 1))

/*
* multiply two integers
*/
public static int multiply(int x, int y) {
if (y == 0) return 0;
else return add(x, multiply(x, decrement(y)));

}

Similar code can be written for other functions such as power and factorial
⇒ see Exercises

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 8



Recursive programs require:

• one or more base cases or terminating conditions

• one or more recursive cases or steps — routine “calls itself”

Q: What if there is no base case?

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 9

Recursion is:

• powerful — can solve arbitrarily large problems

• concise — code doesn’t increase in size with problem

• closely linked to the very important proof technique called mathematical induc-
tion.

• not necessarily efficient

– we’ll see later that the time taken by this implementation of multiplication
increases with approximately the square of the second argument

– long multiplication taught in school is approximately linear in the number of
digits in the second argument

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 10

2. Recursive Data Structures

Recursive programs usually operate on recursive data structures

⇒ data structure defined in terms of itself

2.1 Lists

A list is defined recursively as follows:

• an empty list (or null list) is a list

• an item followed by (or linked to) a list is a list

Notice that the definition is like a recursive program — it has a base case and a
recursive case!

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 11

Building a list. . .

nulla

nullabc

nullab

null link

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 12



2.2 List ADT

As an abstract data type, a list should allow us to:

1. Construct an empty list

2. Insert an element into the list

3. Look at an element in the list

4. Delete an element from the list

5. Move up and down the list

We will specify the List ADT more formally later . . .

For now, we will just look at a simple list that allows us to insert, delete, and
examine only at the front of the list.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 13

3. A LinkedList Class in Java

3.1 The Links

Defined recursively. . .

// link class for chars
class LinkChar {

char item; // the item stored in this link
LinkChar successor; // the link stored in this link

LinkChar (char c, LinkChar s) {item = c; successor = s;}
}

Notice that the constructor makes a new link from an item and an existing link.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 14

3.2 The Linked List

Next we need an object to “hold” the links. We will call this LinkedListChar.

Contains a variable which is either equal to “null” or to the first link (which in
turn contains any other links), so it must be of type LinkChar. . .

class LinkedListChar {
LinkChar first;

}

Now the methods. . .

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 15

• Constructing an empty list

class LinkedListChar {

LinkChar first;

LinkedListChar () {first = null;} // constructor
}

Conceptually, think of this as assigning a “null object” (a null list) to first.
(Technically it makes first a null-reference, but don’t worry about this subtlety
for now.)

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 16



• Adding to the list

class LinkedListChar {
LinkChar first;
LinkedListChar () {first = null;}

// insert a char at the front of the list
void insert (char c) {first = new LinkChar(c, first);}

}

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 17

nulla

nullabc

nullab

nullfirst  =

first  =

first  =

first  =

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 18

To create the list shown above, the class that uses LinkedListChar,
say LinkedListCharTest, would include something like. . .

LinkedListChar myList; // myList is an object
// of type LinkedListChar

myList = new LinkedListChar(); // call constructor to
// create empty list

myList.insert(’a’);
myList.insert(’b’);
myList.insert(’c’);

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 19

• Examining the first item in the list

// define a test for the empty list
boolean isEmpty () {return first == null;}

// if not empty return the first item
char examine () {if (!isEmpty()) return first.item;}

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 20



• Deleting the first item in the list

void delete () {if (!isEmpty()) first = first.successor;}

first then refers to the “tail” of the list.

Note that we no longer have a reference to the previous first link in the list (and
can never get it back). We haven’t really “deleted” it so much as “abandoned” it.
Java’s automatic garbage collection reclaims the space that the first link used.

⇒ This is one of the advantages of Java — in C/C++ we have to reclaim that
space with additional code.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 21

The Complete Program

package DAT; // It’s part of Cara’s DAT package.

import Exceptions.*; // Use a package of
// exceptions defined elsewhere.

/**
* A basic recursive (linked) list of chars.
* @author Cara MacNish // Lines between /** and */ generate
*/ // automatic documentation.

public class LinkedListChar {
/**
* Reference to the first link in the list, or null if
* the list is empty.
*/
private LinkChar first; // Private - users cannot access

// this directly.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 22

/**
* Create an empty list.
*/
public LinkedListChar () {first = null;} // The constructor.

/**
* Test whether the list is empty.
* @return true if the list is empty, false otherwise
*/
public boolean isEmpty () {return first == null;}

/**
* Insert an item at the front of the list.
* @param c the character to insert
*/
public void insert (char c) {first = new LinkChar(c, first);}

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 23

/**
* Examine the first item in the list.
* @return the first item in the list
* @exception Underflow if the list is empty
*/
public char examine () throws Underflow {
if (!isEmpty()) return first.item;
else throw new Underflow("examining empty list");

}
// Underflow is an example of an exception that
// occurs (or is ‘‘thrown’’) if the list is empty.

/**
* Delete the first item in the list.
* @exception Underflow if the list is empty
*/
public void delete () throws Underflow {
if (!isEmpty()) first = first.successor;
else throw new Underflow("deleting from empty list");

}
c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 24



// Many classes provide a string representation
// of the data, for example for printing,
// defined by a method called ‘‘toString()’’.

/**
* construct a string representation of the list
* @return the string representation
*/
public String toString () {
LinkChar cursor = first;
String s = "";
while (cursor != null) {
s = s + cursor.item;
cursor = cursor.successor;

}
return s;

}
}

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 25

4. Java and Pointers

Conceptually, the successor of a list is a list.

One of the great things about Java (and other suitable object oriented languages) is
that the program closely reflects this “theoretical” concept — from a programmer’s
point-of-view the successor of a LinkChar is a LinkChar.

Internally, however, all instance variables act as references, or “pointers”, to the
actual data.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 26

Therefore, a list that looks conceptually like

nullabcfirst  =

internally looks more like

abc null
first

For simplicity of drawing, we will often use the latter type of diagram for representing
recursive data structures.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 27

5. Trees

A tree is another example of a recursive data structure. It might be defined as
follows:

• a null tree (or empty tree) is a tree

• an item followed by one or more trees is a tree

Some examples of trees:

• family trees

• XML files

• inheritance hierarchies

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 28



Graphical representations. . .

a

b

b

tree

null null

nullnull

null

c

b null nullnullb c null nullatree =

More on trees later.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 29

6. Summary

Recursive data structures:

• can be arbitrarily large

• support recursive programs

• are a fundamental part of computer science — they will appear again and again
in this and other units

⇒ You need to understand them. If not, seek help!

We will see many in this unit, including more on lists and trees.

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 30

c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 31 c© Cara MacNish & Tim French CITS2200 Recursive Data Structures and Linked Lists Slide 32



CITS2200 Data Structures and Algorithms

Topic 4

Data Abstraction and Specification of ADTs

• Example — The “Reversal Problem” and a non-ADT solution

• Data abstraction

• Specifying ADTs

• Interfaces

• javadoc documentation

• An ADT solution to the Reversal Problem

Reading: Lambert and Osborne, Chapter 7.
c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 1

1. Aims

The aims of this topic are to:

1. provide a more detailed example of data type abstraction

2. introduce two example data types: the Queue and Stack

3. show how data types will be specified in this unit

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 2

2. The Reversal Problem and a non-ADT Solution

As a more detailed example of ADTs we consider the reversal problem:

Given two character sequences A and B, is A the reverse of B?

One solution: store in arrays, scan and compare from either end · · ·!

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 3

import java.io.*;

/*
* Reversal program (not using ADTs).
* Accepts two character strings from the terminal, separated by
* whitespace, and determines whether one is the reverse of the
* other.
*/
public class Reversal {

// constant for maximum length of the input sequences
public final static int MAX_SEQUENCE = 100;

// main program
public static void main(String[] args) throws IOException {

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 4



// arrays for storing input sequences
char[] sequence1 = new char[MAX_SEQUENCE];
char[] sequence2 = new char[MAX_SEQUENCE];

// indices for first and second sequences
int index1 = 0;
int index2 = 0;

// other local variables
boolean isReverse = true;
char c;

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 5

// Read in the first sequence and store
c = (char) System.in.read();
while (c != ’ ’) {
sequence1[index1] = c;
index1++;
c = (char) System.in.read();

}

// Clear white space.
while (c == ’ ’) c = (char) System.in.read();

// Read in the second sequence and store
while (c != ’ ’ && c != ’\n’ && c != ’\r’) {
sequence2[index2] = c;
index2++;
c = (char) System.in.read();

}

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 6

// Compare the two sequences.
isReverse = index1 == index2;
index1 = 0;
index2--;

while (isReverse && index1 <= index2) {
isReverse = isReverse &&
sequence1[index1] == sequence2[index2-index1];

index1++;
}

if (isReverse) System.out.println("Yes that is the reverse.");
else System.out.println("No that’s not the reverse.");

}
}

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 7

Notice that this program mixes

• “low-level” details of data storage (in arrays) and manipulation (using indices),
with

• the “high-level” goals of inputting and comparing sequences.

⇒ difficult to modify, maintain, reuse, etc

Better solution — use ADTs!

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 8



3. Data Abstraction

The above program integrates:

• data, and instructions to access it

• “higher-level” role of the program

We wish to take a more abstract view. . . can we use generic, reusable data struc-
tures?

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 9

When dealing with the first sequence we. . .

• “Create” an empty sequence

• Append characters to the end

• Scan from beginning to end

• Don’t reuse scanned characters

But this is just what a queue, or FIFO (first-in, first-out buffer), does!

Queue This Way
PASSPORTSNext..

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 10

In general, the operations on a queue include:

1. Create an empty queue

2. Test whether the queue is empty

3. Add a new latest element

4. Examine the earliest element

5. Delete the earliest element

From a user point-of-view, we don’t care how its implemented — all we need in
order to write our reversal program is what operations are available to us.

(Implementations will be considered later.)

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 11

Operations needed for the second sequence are the same as the first, except the
elements added last are taken off first.

This is the operation of a stack, or LIFO (last-in first-out buffer).

MAPLE
SYRUP

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 12



Operations on a stack:

1. Create an empty stack

2. Test whether the stack is empty

3. Add (push) a new element on the top

4. Examine (peek at) the top element

5. Delete (pop) the top element

Implementation of a stack — see Lab Exercises!

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 13

4. Specifying ADTs

We saw in Topic 1 that ADTs consist of a set of operations on a set of data values.
We can specify ADTs by listing the operations (or methods).

The lists of operations on the previous pages are very informal and not sufficient
for writing code. For example

2. Test whether the queue is empty

doesn’t tell us the name of the method, what arguments it is called with, what is
returned, and whether it can throw an exception.

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 14

In these notes, we will specify ADTs by providing at least:

• the name of each operation

• example parameters (the implementation may use different parameter names,
but will have the same number, type and order)

• an explanation of what the operation does — in particular, any constraints on or
changes to the parameters, changes to the ADT instance on which the method
operates, what is returned, and any exceptions thrown

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 15

Thus, a Queue ADT might be specified by the following operations:

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item in the queue, or throw an exception if the queue
is empty

5. dequeue(): remove and return the first item in the queue, or throw an exception
if the queue is empty

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 16



Similarly, the specification of a Stack ADT:

1. Stack(): create an empty stack

2. isEmpty(): return true if the stack is empty, false otherwise

3. push(e): item e is pushed onto the top of the stack

4. peek(): return the item on the top of the stack, or throw an exception if the
stack is empty

5. pop(): remove and return the item on the top of the stack, or throw an exception
if the stack is empty

Note: The use of upper and lowercase in method names should follow the rules
described in the document Java Programming Conventions.

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 17

5. Interfaces

As we have seen, Java itself provides a rigorous way of specifying the methods in
classes: interfaces.

Interfaces provide a natural way of specifying ADTs in programs and enforcing those
specifications.

Example · · ·!

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 18

// Interface for a Queue of characters.
public interface QueueChar {

/*
* test whether the queue is empty
* return true if the queue is empty, false otherwise
*/
public boolean isEmpty ();

/*
* insert an item at the back of the queue
*/
public void enqueue (char a);

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 19

/*
* examine and return the item at the front of the queue
* throw an Underflow exception if the queue is empty
*/
public char examine () throws Underflow;

/*
* remove the item at the front of the queue
* return the removed item
* throw an Underflow if the queue is empty
*/
public char dequeue () throws Underflow;

}

Note: This interface specifies a queue of characters (chars). This can be seen
in the argument to enqueue and the return types of examine and dequeue.

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 20



6. javadoc Documentation

Many texts will describe ADT operations in terms of preconditions and postcondi-
tions.

preconditions— constraints on variable values for the operations to work correctly

post-conditions— what the operation does, in particular changes to the input
variables

In this unit we will replace these, as far as possible, with the facilities provided by
the documentation program javadoc.

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 21

The documentation for each method should include:

• a short general description of the method

• a @param statement describing each parameter

• a @return statement describing the value/object returned (except where the
return type is void)

• an @exception statement describing each exception thrown

The javadoc program automatically generates HTML on-line documentation from
these comments.

Notes:

• Full javadoc documentation must be included with all code that you submit in
this unit.

•We will sometimes omit documentation (or break formatting rules) in lectures
to fit programs on slides.

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 22

Example

/**
* remove the item at the front of the queue
* @return the removed item
* @exception Underflow if the queue is empty
*/
public char dequeue () throws Underflow;

Here the “precondition” is that the queue must be non-empty, the “postcondition”
is that the front element is deleted.

The final QueueChar interface · · ·!

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 23

package DAT; // make this interface part of a package
// (or library) called DAT

import Exceptions.*; // use a package of exceptions called
// Exceptions (contains Underflow)

/**
* Interface for Queue of characters.
* @author Cara MacNish // some other javadoc fields
*/
public interface QueueChar {

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/
public boolean isEmpty ();

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 24



/**
* insert an item at the back of the queue
* @param a the item to insert
*/
public void enqueue (char a);

/**
* examine the item at the front of the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public char examine () throws Underflow;

/**
* remove the item at the front of the queue
* @return the removed item
* @exception Underflow if the queue is empty
*/
public char dequeue () throws Underflow;}

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 25

7. An ADT Solution to the Reversal Problem

Given specifications for Queue and Stack ADTs, which we assume for the
moment are implementations of interfaces QueueChar and StackChar called
QueueCharImplementation and StackCharImplementation respectively, the
Reversal program can be rewritten at a more abstract level.

Program · · ·!

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 26

package DAT;
import java.io.*;
import Exceptions.*;

/**
* Reversal program using ADTs.
* Accepts two character strings from the terminal, separated by
* whitespace and determines whether one is the reverse of the other.
* @author Cara MacNish
*/
public class ReversalADT {

/**
* main program
* @param args command line arguments
* @exception Exception passed to interpreter
*/
public static void main(String[] args) throws Exception {

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 27

// queue for storing first input sequence
QueueChar q = new QueueCharImplementation();

// stack for storing second input sequence
StackChar s = new StackCharImplementation();

// other local variables
boolean isReverse = true;
char c;

// Read in the first sequence and store characters in a queue.
c = (char) System.in.read();
while (c != ’ ’ && c != ’\n’ && c != ’\r’) {
q.enqueue(c);
c = (char) System.in.read();

}

// Clear white space.
while (c == ’ ’) c = (char) System.in.read();

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 28



// Read in the second sequence and store characters in a stack.
while (c != ’ ’ && c != ’\n’ && c != ’\r’) {
s.push(c);
c = (char) System.in.read();

}

// Compare the two sequences.
while (isReverse && !q.isEmpty() && !s.isEmpty())
isReverse = isReverse && q.dequeue() == s.pop();

if (isReverse && q.isEmpty() && s.isEmpty())
System.out.println("Yes that is the reverse.");

else System.out.println("No that’s not the reverse.");
}

}

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 29

Advantages over previous version

• Program ‘reads’ better

– more ‘declarative’

– easier to follow and debug

•Modular

– Implementation independent — easier to change/upgrade

– Division of work-load

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 30

8. Summary

•When programming we should look for abstractions of the data — could we use
a generic data structure (ADT) rather than “re-implement the wheel”?

• ADTs can be specified by listing operations and explaining how the object and
arguments are affected

•More rigorous specifications can be enforced in Java using interfaces

• ADT operations (methods) should be described within the implementation using
javadoc comments

Next we will look at implementations for the Queue. . .

c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 31 c© Cara MacNish & Tim French CITS2200 Data Abstraction and Specification of ADTs Slide 32



CITS2200 Data Structures and Algorithms

Topic 5

Queues

• Implementations of the Queue ADT

• Queue specification

• Queue interface

• Block (array) representations of queues

• Recursive (linked) representations of queues

Reading: Lambert and Osborne, Sections 8.1–8.4.
c© Cara MacNish & Tim French CITS2200 Queues Slide 1

1. Educational Aims

The aims of this topic are to:

1. Introduce two main ways of implementing collection classes:

• block (array-based) implementations, and

• linked (recursive) implementations

2. Introduce pros and cons of the two structures.

3. Develop basic skills in manipulating these two kinds of structures.

Note the ADT just specifies the operations available, and the results of applying
those operations. There are many different ways to implement any given ADT.

c© Cara MacNish & Tim French CITS2200 Queues Slide 2

2. Specification

Recall that in a queue, or FIFO, elements are added to one end, and read/deleted
from the other, in chronological order.

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item, error if the queue is empty

5. dequeue(): remove and return first item, error if queue empty

For simplicity, we will begin with queues containing only chars.

c© Cara MacNish & Tim French CITS2200 Queues Slide 3

2.1 Classification of ADT Operations:

constructors are used to create data structure instances

eg. Queue

checkers report on the “state” of the data structure

eg. isEmpty

manipulators examine and modify data structures

eg. enqueue, examine, dequeue

c© Cara MacNish & Tim French CITS2200 Queues Slide 4



3. Interface

import Exceptions.*;
// Character queue interface.

public interface QueueChar { // some javadoc comments omitted

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/
public boolean isEmpty ();

/**
* add a new item to the queue
* @param a the item to add
*/
public void enqueue (char a);

c© Cara MacNish & Tim French CITS2200 Queues Slide 5

/**
* examine the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public char examine () throws Underflow;

/**
* remove the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public char dequeue() throws Underflow;

c© Cara MacNish & Tim French CITS2200 Queues Slide 6

4. Block Representations

Simplest representation:

• sequence of elements stored in array

• indices (counters) indicating first and last element

? a b b a ? ? ? ?
1 2 3 4 5 6 7 8 9

first last

?
0

c© Cara MacNish & Tim French CITS2200 Queues Slide 7

Disadvantage: queue will be bounded! — can only implement a variation on the
spec:

3. enqueue(e): e is added as the last item in the queue, or error if the queue is
full

For convenience, we will include another checker:

6. isFull(): return true if the queue is full, false otherwise

c© Cara MacNish & Tim French CITS2200 Queues Slide 8



4.1 Class Declaration

import Exceptions.*;

/**
* Block representation of a character queue.
* The queue is bounded.
*/
public class QueueCharBlock implements QueueChar {

Notice implementing interface — class will only compile without error if it provides
all methods specified in the interface. (Otherwise you can declare the class as
abstract).

c© Cara MacNish & Tim French CITS2200 Queues Slide 9

/**
* an array of queue items
*/
private char[] items;

/**
* index for the first item
*/
private int first;

/**
* index for the last item
*/
private int last;

c© Cara MacNish & Tim French CITS2200 Queues Slide 10

4.2 Modifiers

enqueue, examine and dequeue are straightforward. . .

/**
* add a new item to the queue
* @param a the item to add
* @exception Overflow if queue is full
*/
public void enqueue (char a) throws Overflow {
if (!isFull()) {
last++;
items[last] = a;

}
else throw new Overflow("enqueuing to full queue");

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 11

/**
* examine the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public char examine () throws Underflow {
if (!isEmpty()) return items[first];
else throw new Underflow("examining empty queue");

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 12



/**
* remove the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public char dequeue() throws Underflow {
if (!isEmpty()) {
char a = items[first];
first++;
return a;

}
else throw new Underflow("dequeuing from empty queue");

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 13

4.3 Constructors and Checkers

To see how to code the constructor and isEmpty consider successive deletions until
first catches last.

a ?? ? ? ? ? ?

last last

firstfirst

The queue has one element if first == last, and is therefore empty when first
== last + 1 . . .

c© Cara MacNish & Tim French CITS2200 Queues Slide 14

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/

public boolean isEmpty () {return first == last + 1;}

Java arrays number from 0, so first is initialised to 0. . .

/**
* initialise a new queue
* @param size the size of the queue
*/
public QueueCharBlock (int size) {
items = new char[size];
first = 0;
last = -1;

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 15

The queue is full if there is simply no room left in the array. . .

/**
* test whether the queue is full
* @return true if the queue is full, false otherwise
*/
public boolean isFull () {return last == items.length - 1;}

Notes

• length is an instance variable of an array object, and contains the size of the
array.

• Since arrays number from 0, the nth element has index n− 1.

c© Cara MacNish & Tim French CITS2200 Queues Slide 16



4.4 Alternative Block Implementations

Problem: as elements are deleted the amount of room left for the queue is eroded
— the space in the array is not reused.

Solution: wrap queue around. . .

first

f e r na n d o

last

9876543210

Conceptually, this forms a cyclic queue (or cyclic buffer). . .

c© Cara MacNish & Tim French CITS2200 Queues Slide 17

a

n

d

o

n
r

e

f
firstlast

Effects on the above program. . .

c© Cara MacNish & Tim French CITS2200 Queues Slide 18

• first and last must be incremented until they reach the end of the array,
then reduced to 0. This can be achieved in a concise way using the % (“mod”)
operation. eg:

public void enqueue (char a) {
if (!isFull()) {
last = (last + 1) % items.length;
items[last] = a;

}
else throw new Overflow("enqueuing to full queue");

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 19

• A queue is now empty when:

first == (last + 1) % items.length

Problem: The above condition also represents a full queue!

One solution — define queue as full when it contains items.length-1 elements
and use the condition:

first == (last + 2) % items.length

first

f e r na n d o
9876543210

last

s

c© Cara MacNish & Tim French CITS2200 Queues Slide 20



But now a queue created to hold n objects only has room for n− 1 objects

⇒ modify the constructor. . .

public QueueCharCyclic (int size) {
items = new char[size+1]; // add 1 to array size
first = 0;
last = size; // start last at end of block

}

Another solution — instead of two indices, keep one index for the first element,
and a count of the size of the queue.

⇒ Exercises!

c© Cara MacNish & Tim French CITS2200 Queues Slide 21

5. Recursive (Linked) Representation

Biggest problem with block representation — predefined queue length

Solution: use a recursive structure!

Recall singly linked list. . .

abc null
first

c© Cara MacNish & Tim French CITS2200 Queues Slide 22

For a queue, we need to be able to access both ends — one to insert and one to
delete.

Although the end can be accessed by following the references down the list, it is
more efficient to store references to both ends. . .

abc null

lastfirst

Note, it is important that the arrows point from first to last.

c© Cara MacNish & Tim French CITS2200 Queues Slide 23

5.1 Class Declaration

import Exceptions.*;
/**
* Linked list representation of a queue of characters.
*/
public class QueueCharLinked implements QueueChar {

/**
* the front of the queue, or null if queue’s empty
*/
private LinkChar first;

/**
* the back of the queue, or null if queue’s empty
*/
private LinkChar last;

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 24



5.2 Constructors and Checkers

Empty queue:

first → null
last → null

Queue and isEmpty are easy. . .

c© Cara MacNish & Tim French CITS2200 Queues Slide 25

/**
* initialise a new Queue
*/
public QueueCharLinked () {
first = null;
last = null;

}

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/
public boolean isEmpty () {return first == null;}

c© Cara MacNish & Tim French CITS2200 Queues Slide 26

5.3 Examining and Dequeueing

Examining and dequeueing are easy!

Examining is the same as for the linked list. . .

public char examine () throws Underflow {
if (!isEmpty()) return first.item;
else throw new Underflow("examining empty queue");

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 27

Dequeueing is the same as deleting in the linked list, except that when the last item
is dequeued, last must be assigned null. . .

aa null null null

space not reclaimed

first last last first first last

c© Cara MacNish & Tim French CITS2200 Queues Slide 28



public char dequeue () throws Underflow {
if (!isEmpty()) {
char c = first.item;
first = first.successor;
if (isEmpty()) last = null;
return c;

}
else throw new Underflow("dequeuing from empty queue");

}

c© Cara MacNish & Tim French CITS2200 Queues Slide 29

5.4 Enqueueing

Enqueueing is also easy! Just reassign the null reference at the end of the queue to
a reference to another link, and move last to the new last element. . .

ab null

first last

ab b null

ab b null

first last

first last

c© Cara MacNish & Tim French CITS2200 Queues Slide 30

. . . unless the queue is empty, then first and last must both reference a new
link. . .

public void enqueue (char a) {
if (isEmpty()) {
first = new LinkChar(a,null);
last = first;

}
else {
last.successor = new LinkChar(a,null);
last = last.successor;

}
}

c© Cara MacNish & Tim French CITS2200 Queues Slide 31

6. Summary

• block (array with indices to endpoints)

– bounded

– may reserve space unnecessarily

– ‘eroded’ with use

• block with wrap around (cyclic)

– bounded

– space reserved unnecessarily

– not ‘eroded’

• recursive (linked list with references to endpoints)

– unbounded

– no unnecessary space wasted

– no ‘erosion’ of space — garbage collection

c© Cara MacNish & Tim French CITS2200 Queues Slide 32



CITS2200 Data Structures and Algorithms

Topic 6

Performance Analysis 1: Introduction

•Why analyse performance?

• Types of performance measurement

– empirical

– analytical

• An example of analytical analysis using Queue

• Introduction to growth rates

Reading: Lambert and Osborne, Section 4.1.
c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 1

1. Educational Aims

The aims of this topic are to:

1. begin thinking about the implications of the choices you make for ADT perfor-
mance

2. introduce simple metrics for assessing algorithm performance, which will later
lead to mathematically-based techniques

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 2

2. Why Performance Analysis?

• Comparison

– choice of ADT

– choice of implementation

– trade-offs — may be no clear winner/depend on calling program

• Improvement

– identification of expensive operations, bottlenecks

– improved implementations within ADTs

– improved implementation of calling programs

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 3

3. Types of Performance Measurement

Empirical measurement

We will see that the most efficient queue ADT to use depends on the program that
uses it — which operations are used most often.

If we have access to the program(s), we may be able to measure the performance
in those programs, on real data — called evaluation in context.

This is the “get yer hands dirty” approach. Run the system with real-world input
and observe, or monitor (automatically), the results.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 4



Can compare data structures on the same problems (same machine, same compiler,
etc)

⇒ benchmark programs

• Useful if test input is close to expected input.

• Not much use if we are developing eg a library of modules for use in many
different contexts

In some cases, it is not feasible to test a programme “in the field” (e.g. nuclear
weapons systems). Here, we may construct a (computer) model of the system and
evaluate performance with simulated data.

A computer program normally acts as its own model — run on simulated data
(often generated using pseudo-random numbers).

However, a simplified model may be built or the program modified to fit the simu-
lated data.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 5

Advantages

• nondestructive

• cheap

• fast

• reproducible

Disadvantages

• only as good as the simulations

• can never be sure it matches reality

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 6

Analytical Measurement

Construct a mathematical or theoretical model — use theoretical techniques to
estimate system performance.

Usually

• coarse estimates

• growth rates, complexity classes rather than ‘actual’ time

• worst case or average case

But. . . !

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 7

• fundamental view of behaviour — less susceptible to

– speed of hardware, number of other processes running, etc

– choice of data sets

– unrepresentative examples, spurious responses

• gives a better understanding of the problems

– why is it slow?

– could it be improved?

We will concentrate on analytical analyses.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 8



4. Example: A Basic Analysis of the Queue ADTs

As an example of comparison of ADT performance we consider different represen-
tations of queues using a crude time estimate

Simplifying assumptions:

• each high-level operation (arithmetic operation, Boolean operation, subscripting,
assignment) takes 1 time unit

• conditional statement takes 1 time unit + time to evaluate Boolean expression
+ time taken by most time consuming alternative (worst-case assumption)

• field lookup (“dot” operation) takes 1 time unit

• method takes 1 (for the call) plus 1 for each argument (since each is an assign-
ment)

• creating a new object (from a different class) takes Tc time units

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 9

4.1 Block Representation Queues (Without Wraparound)

public QueueCharBlock (int size) { //2
items = new char[size]; //1+Tc
first = 0; //1
last = -1; //1

}

5 + Tc time units

public boolean isEmpty () {return first == last + 1;}

4 time units

public boolean isFull () {return last == items.length - 1;}

5 time units

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 10

public void enqueue (char a) throws Overflow { //2
if (!isFull()) { //7
last++; //1
items[last] = a; //2

}
else throw new Overflow("enqueuing to full queue");

}

12 time units

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 11

Exercise:

How many time units for each of the following. . .

public char examine () throws Underflow {
if (!isEmpty()) return items[first];
else throw new Underflow("examining empty queue");

}

public char dequeue() throws Underflow {
if (!isEmpty()) {
char a = items[first];
first++;
return a;

}
else throw new Underflow("dequeuing from empty queue");

}

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 12



Summary for Block Implementation

isEmpty, enqueue, examine and dequeue are constant time operations

Queue is constant time if Tc is constant time

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 13

4.2 Recursive (Linked) Representation Queues

public QueueCharLinked () {
first = null;
last = null;

}

3 time units

public boolean isEmpty () {return first == null;}

3 time units

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 14

public void enqueue (char a) { //2
if (isEmpty()) { //4
first = new LinkChar(a,null); //1+Tc
last = first; //1

}
else {
last.successor = new LinkChar(a,null); //2+Tc
last = last.successor; //2

}
}

10 + Tc time units

public char examine () throws Underflow {
if (!isEmpty()) return first.item;
else throw new Underflow("examining empty queue");

}

8 time units

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 15

public char dequeue () throws Underflow { //1
if (!isEmpty()) { //5
char c = first.item; //2
first = first.successor; //2
if (isEmpty()) last = null; //5
return c; //1

}
else throw new Underflow("dequeuing from empty queue");

}

16 time units

Summary for Linked Implementation

Again all are constant time, assuming Tc is.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 16



Comparison. . .

block recursive
Queue 5 + Tc 3
isEmpty 4 3
enqueue 12 10 + Tc

examine 8
dequeue 16

. . . shows no clear winner, especially given

• estimates are very rough — many assumptions

• dependent on relative usage of operations in the programs calling the ADT —
eg. is isEmpty used more or less than dequeue

We will generally not be interested in these “small” differences (eg 5 time units vs
3 time units) — given the assumptions made these are not very informative.

Rather we will be interested in classifying operations according to rates of growth. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 17

5. Growth Rates

For comparative purposes, exact numbers are pretty irrelevant! It is the rate of
growth that is important.

We will abstract away from inessential detail. . .

• ignore specific values of input and just consider the number of items, or “size”
of input

• ignore precise duration of operations and consider the number of (specific) op-
erations as an abstract measure of time

• ignore actual storage space occupied by data elements and consider the number
of items stored as an abstract measure of space

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 18

6. Summary

Two main types of performance measurement — empirical and analytical.

We will concentrate on analytical:

• fundamental view of behaviour

• abstracts away from machine, data sets, etc

• helps in understanding data structures and their implementations

Rather than attempting ‘fine grained’ analysis that compares small differences, we
will concentrate on a coarser (but more robust) analysis in terms of rates of growth.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 19 c© Cara MacNish & Tim French CITS2200 Performance Analysis 1: Introduction Slide 20



CITS2200 Data Structures and Algorithms

Topic 7

Performance Analysis 2: Asymptotic Analysis

• Choosing abstract performance measures

– worst case, expected case, amortized case

• Asymptotic growth rates

–Why use them? Comparison in the limit. “Big O”

• Analysis of recursive programs

Reading: Lambert and Osborne, Sections 4.2–4.3.
c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 1

1. Educational Aims

The aims of this topic are:

1. to develop a mathematical competency in describing and understanding algo-
rithm performance, and

2. to begin to develop an intuitive feel for these mathematical properties.

It is essential for a programmer to be able to understand the capabilities and lim-
itations of different data structures. Asymptotic analysis provides the foundation
for this understanding (even though you would not expect to do such analysis on a
regular basis).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 2

2. Worst Case, Expected Case, Amortized Case

Abstract measures of time and space will still depend on actual input data.

eg Exhaustive sequential search

public int eSearch(...) {
...
i = 0;
while (a[i] != goal && i < n) i++;
if (i == n) return -1; // goal not found
else return i;

}

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 3

Abstract time

• goal is first element in array — a units

• goal is last element in array — a + bn units

for some constants a and b.

Different growth rates — second measure increases with n.

What measure do we use? A number of alternatives. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 4



2.1 Worst Case Analysis

Choose data which have the largest time/space requirements.

In the case of esearch, the worst case complexity is a + bn

Advantages

• relatively simple

• gives an upper bound, or guarantee, of behaviour — when your client runs it it
might perform better, but you can be sure it won’t perform any worse

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 5

Disadvantages

• worst case could be unrepresentative — might be unduly pessimistic

– knock on effect — client processes may perform below their capabilities

– you might not get anyone to buy it!

Since we want behaviour guarantees, we will usually consider worst case analysis in
this unit.

(Note there is also ‘best case’ analysis, as used by second-hand car sales persons
and stock brokers.)

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 6

2.2 Expected Case Analysis

Ask what happens in the average, or “expected” case.

For eSearch, a +
b

2
n, assuming a uniform distribution over the input.

Advantages

• more ‘realistic’ indicator of what will happen in any given execution

• reduces effects of spurious/non-typical/outlier examples

For example, Tony Hoare’s Quicksort algorithm is generally the fastest sorting
algorithm in practice, despite it’s worst case complexity being significantly higher
than other algorithms.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 7

Disadvantages

• only possible if we know (or can accurately guess) probability distribution over
examples (with respect to size)

• more difficult to calculate

• often does not provide significantly more information than worst case when we
look at growth rates

• may also be misleading. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 8



2.3 Amortized Case Analysis

Amortized analysis is a variety of worst case analysis, but rather than looking at the
cost of doing the operation once, it examines the cost of repeating the operation
in a sequence.

That is, we determine the worst case complexity T (n) of performing a sequence of
n operations, and report the amortized complexity as T (n)/n.

An alternative view is the accounting method: determine the individual cost of each
operation, including both its execution time and its influence on the running time
of future operations. The analogy: imagine that when you perform fast operations
you deposit some “time” into a savings account that you can use when you run a
slower operation.

Reading: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, Chapter 17.
c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 9

2.4 Amortized Analysis for a Multi-delete Stack

A multi-delete stack is the stack ADT with an additional operation:

1. mPop(i): delete the top i elements from the stack

Assuming a linked representation, the obvious way to execute mPop(i) is to perform
pop i times.

If each pop takes b time units, mPop(i) will take approximately ib time units —
linear in i!

Worst case is nb time units for stack of size n.

But. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 10

Before you can delete i elements, need to (somewhere along the way. . . ) individually
insert i elements, which takes i operations and hence ic time for some constant c.

Total for those i+1 operations is i(c+b). The time for i operations is approximately
linear in i. The average time for each operation

i

i + 1
(c + b)

is approximately constant — independent of i.

More accurate for larger i, which is also where its more important!




 lim

i→∞

i

i + 1
(c + b) = c + b






This is called an amortized analysis. The cost of an expensive operation is amortized
over the cheaper ones which must accompany it.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 11

The Accounting Method for the Multi-delete Stack

Every time push is called we take a constant time (say a) to perform the operation,
but we also put a constant amount of time (say b) in our “time-bank”. When it
comes time to perform multi-pop mPop(i), if there are i items to delete, we must
have at least ib time units in the bank.

Stack
of

Height

Number of operations

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 12



Where Amortized Analysis Makes a Difference

In the block implementations of the data structures we have seen so far, we simply
throw an exception when we try to add to a full structure.

Several implementations (e.g. Java.util.ArrayList) do not throw an exception
in this case, but rather create an array twice the size, copy all the elements in the
old array across to the new array, and then add the new element to the new array.

This is an expensive operation, but it can be shown that the amortized cost of the
add operation is constant.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 13

3. Asymptotic Growth Rates

We have talked about comparing data structure implementations — using either an
empirical or analytical approach.

Focus on analytical:

• independent of run-time environment

• improves understanding of the data structures

We said we would be interested in comparisons in terms of rates of growth.

Theoretical analysis also permits a deeper comparison which the other methods
don’t — comparison with the performance barrier inherent in problems. . .

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 14

Wish to be able to make statements like:

Searching for a given element in a block of n distinct elements using only
equality testing takes n comparisons in the worst case.

Searching for a given element in an ordered list takes at least log n compar-
isons in the worst case.

These are lower bounds (on the worst case) — they tell us that we are never going
to do any better no matter what algorithm we choose.

Again they reflect growth rates (linear, logarithmic)

In this section, we formalise the ideas of analytical comparison and growth rates.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 15

3.1 Why Asymptopia

We would like to have a simple description of behaviour for use in comparison.

• Evaluation may be misleading.

Consider the functions t1 = 0.002m2, t2 = 0.2m, t3 = 2 logm.

Evaluating at m = 5 gives t1 < t2 < t3. This could be misleading — for
“serious” values of m the picture is the opposite way around.

Want a description of behaviour over the full range.
c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 16



•Want a closed form.

eg.
n(n + 1)

2
not n + (n− 1) + · · · + 2 + 1

Some functions don’t have closed forms, or they are difficult to find — want a
closed form approximation

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 17

•Want simplicity.

Difficult to see what 2n−
1
n log n2+

3

2
n2−n does. We want to abstract away from

the smaller perturbations. . .

What simple function does it behave like?

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 18

Solution

Investigate what simple function the more complex one tends to or asymptotically
approaches as the argument approaches infinity, ie in the limit.

Choosing large arguments has the effect of making less important terms fade away
compared with important ones.

eg. What if we want to approximate n4 + n2 by n4 ?

How much error?

n n4 n2
n2

n4 + n2

1 1 1 50%
2 16 4 20%
5 625 25 3.8%
10 10 000 100 1%
20 160 000 400 0.25%
50 6 250 000 2 500 0.04%

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 19

3.2 Comparison “in the Limit”

How well does one function approximate another?

Compare growth rates. Two basic comparisons. . .

1.
f(n)

g(n)
→ 0 as n → ∞

⇒ f(n) grows more slowly than g(n).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 20



2.
f(n)

g(n)
→ 1 as n → ∞

⇒ f(n) is asymptotic to g(n).

In fact we won’t even be this picky — we’ll just be concerned whether the ratio
approaches a constant c > 0.

f(n)

g(n)
→ c as n → ∞

This really highlights the distinction between different orders of growth — we
don’t care if the constant is 0.00000000001 !

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 21

3.3 ‘Big O’ Notation

In order to talk about comparative growth rates more succinctly we use the ‘big O’
notation. . .

Definition

f(n) is O(g(n)) if there is a constant c > 0 and an integer n0 ≥ 1 such that, for
all n ≥ n0,

f(n) ≤ cg(n).

— f “grows” no faster than g, for sufficiently large n

— growth rate of f is bounded from above by g

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 22

Example:

Show (prove) that n2 is O(n3).

Proof

We need to show that for some c > 0 and n0 ≥ 1,

n2 ≤ cn3

for all n ≥ n0. This is equivalent to

1 ≤ cn

for all n ≥ n0.

Choosing c = n0 = 1 satisfies this inequality. "

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 23

Exercise:

Show that 5n is O(3n).

Exercise:

Show that 143 is O(1).

Exercise:

Show that for any constants a and b, an3 is O(bn3).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 24



Example:

Prove that n3 is not O(n2).

Proof (by contradiction)

Assume that n3 is O(n2). Then there exists some c > 0 and n0 ≥ 1 such that

n3 ≤ cn2

for all n ≥ n0.

Now for any integer m > 1 we have mn0 > n0, and hence

(mn0)
3 ≤ c(mn0)

2.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 25

Re-arranging gives

m3n3
0 ≤ cm2n2

0

mn0 ≤ c

m ≤
c

n0

This is contradicted by any choice of m such that m >
c

n0

. Thus the initial

assumption is incorrect, and n3 is not O(n2). "

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 26

From these examples we can start to see that big O analysis focuses on dominating
terms.

For example a polynomial

adn
d + ad−1n

d−1 + · · · + a2n
2 + a1n + a0

— O(nd)

— is O(nm) for any m > d

— is not O(nl) for any l < d.

Here adnd is the dominating term, with degree d.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 27

For non-polynomials identifying dominating terms may be more difficult.

Most common in CS

• polynomials — 1, n, n2, n3, . . .

• exponentials — 2n, . . .

• logarithmic — log n, . . .

and combinations of these.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 28



3.4 ‘Big Ω’ Notation

Big O bounds from above. For example, if our algorithm operates in time O(n2)
we know it grows no worse than n2. But it might be a lot better!

We also want to talk about lower bounds — eg

No search algorithm (among n distinct objects) using only equality testing
can have (worst case time) growth rate better than linear in n.

We use big Ω.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 29

Definition

f(n) is Ω(g(n)) if there are a constant c > 0 and an integer n0 ≥ 1 such that, for
all n ≥ n0,

f(n) ≥ cg(n).

— f grows no slower than g, for sufficiently large n

— growth rate of f is bounded from below by g

Note f(n) is Ω(g(n)) if and only if g(n) is O(f(n)).

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 30

4. Analysis of Recursive Programs

Previously we’ve talked about:

• The power of recursive programs.

• The unavoidability of recursive programs (they go hand in hand with recursive
data structures).

• The potentially high computational costs of recursive programs.

They are also the most difficult programs we will need to analyse.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 31

It may not be too difficult to express the time or space behaviour recursively, in
what we call a recurrence relation or recurrence equation, but general methods for
solving these are beyond the scope of this unit.

However some can be solved by common sense!

Example:

What is the time complexity of the recursive addition program from Topic 3?

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 32



public static int increment(int i) {return i + 1;}

public static int decrement(int i) {return i - 1;}

public static int add(int x, int y) {
if (y == 0) return x;
else return add(increment(x), decrement(y));

}

• if, else, ==, return, etc — constant time

• increment(x), decrement(y) — constant time

• add(increment(x), decrement(y))? — depends on size of y

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 33

Recursive call is same again, except y is decremented. Therefore, we know the time
for add(...,y) in terms of the time for

add(...,decrement(y)).

More generally, we know the time for size n input in terms of the time for size
n− 1. . .

T (0) = a

T (n) = b + T (n− 1), n > 1

This is called a recurrence relation.

We would like to obtain a closed form — T (n) in terms of n.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 34

If we list the terms, its easy to pick up a pattern. . .

T (0) = a

T (1) = a + b

T (2) = a + 2b

T (3) = a + 3b

T (4) = a + 4b

T (5) = a + 5b
...

From observing the list we can see that

T (n) = bn + a

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 35

Example:

public static int multiply(int x, int y) {
if (y == 0) return 0;
else return add(x, multiply(x, decrement(y)));

}

• if, else, ==, return, etc — constant time

• decrement(y) — constant time

• add — linear in size of 2nd argument

• multiply — ?

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 36



We use:

a const for add terminating case
b const for add recursive case
a′ const for multiply terminating case
b′ const for multiply recursive case
x for the size of x
y for the size of y
Tadd(y) time for add with 2nd argument y
T (x, y) time for multiply with arguments x and y

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 37

Tabulate times for increasing y. . .

T (x, 0) = a′

T (x, 1) = b′ + T (x, 0) + Tadd(0) = b′ + a′ + a

T (x, 2) = b′ + T (x, 1) + Tadd(x) = 2b′ + a′ + xb + 2a

T (x, 3) = b′ + T (x, 2) + Tadd(2x) = 3b′ + a′ + (xb + 2xb) + 3a

T (x, 4) = b′ + T (x, 3) + Tadd(3x) = 4b′ + a′ + (xb + 2xb + 3xb) + 4a
...

Can see a pattern of the form

T (x, y) = yb′ + a′ + [1 + 2 + 3 + · · · + (y − 1)]xb + ya

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 38

We would like a closed form for the term [1 + 2 + 3 + · · · + (y − 1)]xb.

Notice that, for example

1 + 2 + 3 + 4 = (1 + 4) + (2 + 3) =
4

2
.5

1 + 2 + 3 + 4 + 5 = (1 + 5) + (2 + 4) + 3 =
5

2
.6

In general,

1 + 2 + · · · + (y − 1) = (
y − 1

2
).y =

1

2
y2 −

1

2
y

(Prove inductively!)

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 39

Overall we get an equation of the form

a′′ + b′′y + c′′xy + d′′xy2

for some constants a′′, b′′, c′′, d′′.

Dominant term is xy2:
— linear in x (hold y constant)
— quadratic in y (hold x constant)

There are a number of well established results for different types of problems. We
will draw upon these as necessary.

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 40



5. Summary

Choosing performance measures

• worst case — simple, guarantees upper bounds

• expected case — averages behaviour, need to know probability distribution

• amortized case — may ‘distribute’ time for expensive operation over those which
must accompany it

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 41

Asymptotic growth rates

• compare algorithms

• compare with inherent performance barriers

• provide simple closed form approximations

• big O — upper bounds on growth

• big Ω — lower bounds on growth

Analysis of recursive programs

• express as recurrence relation

• look for pattern to find closed form

• can then do asymptotic analysis

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 42

c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 43 c© Cara MacNish & Tim French CITS2200 Performance Analysis 2: Asymptotic Analysis Slide 44



CITS2200 Data Structures and Algorithms

Topic 8

Objects and Iterators

• Generalising ADTs using objects

— wrappers, casting

• Iterators for Collection Classes

• Inner Classes

Reading: Lambert and Osborne, Sections 6.3–6.5 and 2.3.5
c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 1

1. Generalising ADTs to use Objects

Our ADTs so far have stored primitive types.

eg. block implementation of a queue from Topic 5.

public class QueueCharBlock {

private char[] items;
private int first, last;

public char dequeue() throws Underflow {
if (!isEmpty()) {
char a = items[first];
first++;
return a;

}
...

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 2

This queue will only work for characters. We would need to write another for
integers, another for a queue of strings, another for a queue of queues, and so on.

Far better would be to write a single queue that worked for any type of object.

In object-oriented languages such as Java this is easy, providing we recall a few
object-oriented programming concepts from Topic 4.

— inheritance, casting, and wrappers.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 3

1.1 Objects in the ADTs

The easiest part is changing the ADT. (The more subtle part is using it.)

Recall that:

• every class is a subclass of the class Object

• a variable of a particular class can hold an instance of any subclass of that class

This means that if we define our ADTs to hold things of type Object they can be
used with objects from any other class!

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 4



/**
* Block representation of a queue (of objects).
*/
public class QueueBlock {

private Object[] items; // array of Objects
private int first;
private int last;

public Object dequeue() throws Underflow { // returns an Object
if (!isEmpty()) {
Object a = items[first];
first++;
return a;

}
else throw new Underflow("dequeuing from empty queue");

}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 5

1.2 Wrappers

The above queue is able to hold any type of object — that is, an instance of any
subclass of the class Object. (More accurately, it can hold any reference type.)

But there are some commonly used things that are not objects — the primitive
types.

In order to use the queue with primitive types, they must be “wrapped” in an object.

Recall from Topic 4 that Java provides wrapper classes for all primitive types.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 6

Autoboxing — Note for Java 1.5

Java 1.5 provides autoboxing and auto-unboxing — effectively, automatic wrapping
and unwrapping done by the compiler.

Integer i = 5;
int j = i;

However:

• Not a change to the underlying language — the compiler recognises the mis-
match and substitutes code for you:

Integer i = Integer.valueOf(5)
int j = i.intValue();

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 7

• Can lead to unintuitive behaviour. Eg:

Long w1 = 1000L;
Long w2 = 1000L;
if (w1 == w2) {
// do something

}

may not work. Why?

• Can be slow. Eg. if a, b, c, d are Integers, then

d = a * b + c
becomes

d.valueOf(a.intValue() * b.intValue() + c.intValue())

For more discussion see:

http://chaoticjava.com/posts/autoboxing-tips/

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 8



1.3 Casting

Recall that in Java we can assign “up” the hierarchy — a variable of some class
(which we call its reference) can be assigned an object whose reference is a subclass.

However the converse is not true — a subclass variable cannot be assigned an object
whose reference is a superclass, even if that object is a subclass object.

In order to assign back down the hierarchy, we must use casting.

This issue occurs more subtly when using ADTs. Recall our implementation of a
queue. . .

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 9

public class QueueBlock {
private Object[] items; // array of Objects
...
public Object dequeue() throws Underflow { // returns an Object
if (!isEmpty()) {
Object a = items[first];
first++;
return a;

}
else...

Consider the calling program:

QueueBlock q = new QueueBlock();
String s = "OK, I’m going in!";
q.enqueue(s); // put it in the queue
s = q.dequeue(); // get it back off ???

The last statement fails. Why?

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 10

The queue holds Objects. Since String is a subclass of Object, the queue can
hold a String, but its reference in the queue is Object. (Specifically, it is an
element of an array of Objects.)

dequeue() then returns the “String” with reference Object.

The last statement therefore asks for something with reference Object (the super-
class) to be assigned to a variable with reference String (the subclass), which is
illegal.

We have to cast the Object back “down” the hierarchy:

s = (String) q.dequeue(); // correct way to dequeue

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 11

1.4 Generics

Java 1.5 provides an alternative approach. Generics allow you to specify the type
of a collection class:

Stack<String> ss = new Stack<String>();
String s = "OK, I’m going in!";
ss.push(s);
s = ss.pop()

Like autoboxing, generics are handled by compiler rewrites — the compiler checks
that the type is correct, and substitutes code to do the cast for you.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 12



Writing Generic Classes

/**
* A simple generic block stack for
* holding object of type E
**/
class Stack<E> {

private Object[] block;
private int size;

public Stack(int size) {block = new Object[size];}

public E pop() {return (E) block[--size];}

public void push(E el) {block[size++] = el;}
}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 13

Using Generic Classes

public static void main(String[] args){
//create a Stack of Strings
Stack<String> s = new Stack<String>(10);
s.push("abc");
System.out.println(s.pop());

//create a stack of Integers
Stack<Integer> t = new Stack<Integer>(1);
t.push(7);
System.out.println(t.pop());

}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 14

How Generics Work

The program:

Stack<String> ss = new Stack<String>(10);
String s = "OK, I’m going in!";
ss.push(s);
s = ss.pop();

is converted to:

Stack<Object> ss = new Stack<Object>(10);
String s = "OK, I’m going in!";
ss.push(s);
s = (String) ss.pop();

at compile time. Generics allow the compiler to ensure that the casting is correct,
rather than the runtime environment.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 15

Some Tricks with Generics...

Note that Stack<String> is not a subclass of Stack<Object> (because you can’t
put an Integer on a stack of Strings).

Therefore, polymorphism won’t allow you to define methods for all stacks of sub-
classes of String. e.g.

public int printAll(Stack<Object>);

Java 5 allows wildcards to overcome this problem:

public int printAll(Stack<?>);

or even

public int printAll(Stack<? extends Object>);

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 16



Generics in Java are complex and are the subject of considerable debate. While you
may not need to write them often, it is important you understand them as the Java
Collection classes all use generics.

Some interesting articles:

http://www-128.ibm.com/developerworks/java/library/
j-jtp01255.html

http://weblogs.java.net/blog/arnold/archive/2005/06/
generics_consid_1.html

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 17

2. Iterators

It is often necessary to traverse a collection — ie look at each item in turn.

Example:

In the lab exercises, you were asked to get characters out of a basic LinkedListChar
one at a time and print them on separate lines. Doing this using the supplied
methods destroyed the list.

We now know this to be the behaviour of a Stack, which has no public methods for
accessing items other than the top one.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 18

Example:

In Topic 3, we developed the simple linked list class. In order to print out the items
in the list (without destroying it), we provided the following toString method:

public String toString () {
LinkChar cursor = first;
String s = "";
while (cursor != null) {
s = s + cursor.item;
cursor = cursor.successor;

}
return s;

}
}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 19

This is not a generic approach. If we wanted to look at the items for another
purpose — say to print on separate lines, or search for a particular item — we
would have to write another method using another loop to do that.

A more standard, generic approach is to use an iterator.

An iterator is a companion class to a collection (known as the iterator’s backing
collection), for traversing the collection (ie examining the items one at a time).

An iterator uses standard methods for traversing the items, independently of the
backing collection. In Java, these methods are specified by the Iterator interface in
java.util.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 20



Interface Iterator<E>

The interface has the methods:

• boolean hasNext() — return true if the iterator has more items

• E next() — if there is a next item, return that item and advance to the next
position, otherwise throw an exception

• void remove()— remove from the underlying collection the last item returned
by the iterator. Throws an exception if the immediately preceding operation was
not next.

Note: some iterators do not provide this method, and throw an
UnsupportedOperationException (arguably a poor use of interfaces).

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 21

Interface Collection<E>

The underlying collection must also have a method for “spawning” a new iterator
over that collection. In Java’s Collection interface, this method is called iterator.

Iterator<E> interator()

Have a look at the collection classes:

http://www.csse.uwa.edu.au/programming/java/jdk1.5/api/

Here, you will find specifications for some of the data structures we have already
seen and many we are yet to discuss. You may wonder why we are bothering to
implement these data structures at all!

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 22

3. Using Java Collections

Built-in (API) classes can be accessed in two ways:

1. by providing their “full name”

java.util.LinkedList<String> b = new java.util.LinkedList();

Here LinkedList is a class in the API package java.util.

2. by importing the class

import java.util.LinkedList;
.
.
.
LinkedList<String> b = new LinkedList();

3. You can also import all classes in a package

import java.util.*;

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 23

4. java.util

Most general data structures in the Java API are in the util package. There are:

1. Collections:

LinkedList<E>, ArrayList<E>, PriorityQueue<E>,
Set<E>, Stack<E>, TreeSet<E>

2.Maps:

SortedMap<K, V>, TreeMap<K,V>, HashMap<K, V>

3. and others:

Iterator<E>, BitSet

These allow you to create most of the data structures you will ever need. However, it
is important to be able to compare the performance and understand the limitations
of each. We will also examine some data structures that are not in the Java API.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 24



4.1 Using Iterators

The following code creates an iterator to access the elements of a queue.

public static void main(String[] args) {
Queue q = new QueueCyclic();
q.enqueue(new Character(’p’));
q.enqueue(new Character(’a’));
q.enqueue(new Character(’v’));
q.enqueue(new Character(’o’));
Iterator it = q.iterator();
while(it.hasNext())
System.out.println(it.next());

}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 25

4.2 Implementation — Backing Queue

import java.util.Iterator;
public class QueueCyclic implements Queue {

Object[] items; // package access for
int first, last; // companion class

public QueueCyclic(int size) {
items = new Object[size+1];
first = 0;
last = size;

}

public Iterator iterator() {
return new BasicQueueIterator(this);

}
...

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 26

4.3 Implementation — Iterator

class BasicQueueIterator implements Iterator {
private QueueCyclic backingQ;
private int current;

BasicQueueIterator(QueueCyclic q) {
backingQ = q;
current = backingQ.first;

}

public boolean hasNext() {
return !backingQ.isEmpty() &&
((backingQ.last >= backingQ.first &&
current <= backingQ.last) ||

(backingQ.last < backingQ.first &&
(current >= backingQ.first || current <= backingQ.last)));

}
c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 27

public Object next() {
if (!hasNext())
throw new NoSuchElementException("No more elements.");

else {
Object temp = backingQ.items[current];
current = (current+1)%backingQ.items.length;
return temp;

}
}

public void remove() {
throw new UnsupportedOperationException
("Cannot remove from within queue.");

}
}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 28



4.4 Fail-fast Iterators

Problem: What happens if backing collection changes during use of an iterator?

eg. multiple iterators that implement remove

⇒ can lead to erroneous return data, or exceptions (eg null pointer exception)

One Solution: Disallow further use of iterator (throw exception) when an unex-
pected change to backing collection has occurred — fail-fast method

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 29

Changes to the backing collection. . .

public class QueueCyclic implements Queue {

Object[] items;
int first, last;
int modCount; // number of times modified

public void enqueue(Object a) {
if (!isFull()) {
last = (last + 1) % items.length;
items[last] = a;
modCount++;

}
else throw new Overflow("enqueuing to full queue");

}
...

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 30

Changes to the iterator. . .

class BasicQueueIterator implements Iterator {
private QueueCyclic backingQ;
private int current;
private int expectedModCount;

public Object next() {
if (backingQ.modCount != expectedModCount)
throw new ConcurrentModificationException();

if (!hasNext())
throw new NoSuchElementException("No more elements.");

else {
Object temp = backingQ.items[current];
current = (current+1)%backingQ.items.length;
return temp;

}
}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 31

5. Inner Classes — A Better Way to Iterate

From a software engineering point-of-view, the way we have implemented our iter-
ator is not ideal:

• private variables of QueueCyclic were given “package” access so they could
be accessed from BasicQueueIterator — now they can be accessed from
elsewhere too

• BasicQueueIterator is only designed to operate correctly with QueueCyclic
(implementation-specific) but there is nothing preventing applications trying to
use it with other implementations

Java provides a tidier way. . . inner classes.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 32



Inner classes are declared within a class:

public class MyClass {

// fields

// methods

private class MyInnerClass extends MyInterface {

// fields

// methods
}

...

public MyInterface getMyInnerClass() {...}
}

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 33

The Inner class is able to access all of the private fields and methods of the outer
class.

This gives us a very powerful method to control access to a data structure. The
code of the inner class has free range over the instance variables of the outer class,
but users can only access the inner class through the prescribed interface.

Inner classes are used extensively in Object Oriented Programming for call backs,
remote method invocation, or listener classes.

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 34

Cyclic queue implementation using an inner class. . .

import java.util.Iterator;
public class QueueCyclic implements Queue {

private Object[] items; // private again
private int first, last; //

...

public Iterator iterator() {
return new BasicQueueIterator(); // no "this"

}

private class BasicQueueIterator implements Iterator {

private int current;
// no need to store backing queue

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 35

private BasicQueueIterator() { // constructed by outer class
current = first; // variable accessed directly

} // no passing of backing queue

public boolean hasNext() {
return !isEmpty() &&
((last >= first && current <= last) ||
(last < first && (current >= first || current <= last)))

}
} // end of inner class

} // end of QueueCyclic

Q: What other structures have we seen where the use of inner classes would be
appropriate?

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 36



5.1 Foreach

Another Java 5 feature is the new control structure foreach. This can be used for
iteration through a collection of elements. For example, the following code:

int[] array = {0,2,4};
for (int i : array)
System.out.println(i);

means the same as:

int[] array = {0,2,4};
for (int i = 0; i < array.length; i++)
System.out.println(array[i]);

But its use is not just restricted to arrays. Indeed, any object with a iterator()
method can be used!

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 37

6. Summary

• ADTs can be made more general through the use of objects and casting

• generics provide a “cleaner” mechanism of achieving the same functionality

• iterators are a means of traversing a collection of elements

• the use of inner classes simplifies the construction of iterators

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 38

c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 39 c© Cara MacNish & Tim French CITS2200 Objects and Iterators Slide 40



CITS2200 Data Structures and Algorithms

Topic 9

Lists

•Why lists?
• List windows
• Specification
• Block representation
• Singly linked representation
• Performance comparisons

Reading: Lambert and Osborne, Sections 9.1–9.4
c© Cara MacNish & Tim French CITS2200 Lists Slide 1

1. Introduction

Queues and stacks are restrictive — they can only access one position within the
data structure (“first” in queue, “top” of stack)

In some applications we want to access a sequence at many different positions:

eg. Text editor — sequence of characters, read/insert/delete at any point

eg. Bibliography — sequence of bibliographic entries

eg. Manipulation of polynomials — see Wood, Section 3.3.

eg. List of addresses
...

In this section, we introduce the List ADT which generalises stacks and queues.

c© Cara MacNish & Tim French CITS2200 Lists Slide 2

2. List Windows

We will use the word “window” to refer to a specific position in the list:

• maintain a distinction from “reference” or “index” which are specific implemen-
tations

• maintain a distinction from “cursor” which is most commonly used as an appli-
cation of a window in editing

May be several windows, eg. . .

a _ m i s s s p e l t _ w o r d

before first after lastcursor

c© Cara MacNish & Tim French CITS2200 Lists Slide 3

Our List ADT will provide explicit operations for handling windows.

The following specification assumes that w is a Window object, defined in a separate
class. Different window objects will be needed for different List implementations

⇒ a List class and a companion Window class will be developed together.

Note: A window class is generally not good software engineering practice as there
is no coupling between the List and the window. Instead, modern ADTs specify list
operations in terms of iterators.

c© Cara MacNish & Tim French CITS2200 Lists Slide 4



3. List Specification

" Constructors

1. List(): Initialises an empty list with two associated window positions, before first
and after last.

" Checkers

2. isEmpty(): Returns true if the list is empty.

3. isBeforeFirst(w): True if w is over the before first position.

4. isAfterLast(w): True if w is over the after last position.

"Manipulators

5. beforeFirst(w): Initialises w to the before first position.

6. afterLast(w): Initialises w to the after last position.

7. next(w): Throws an exception if w is over the after last position, otherwise
moves w to the next window position.

c© Cara MacNish & Tim French CITS2200 Lists Slide 5

8. previous(w): Throws an exception if w over is the before first position, otherwise
moves w to the previous window position.

9. insertAfter(e,w): Throws an exception if w is over the after last position, other-
wise an extra element e is added to the list after w.

10. insertBefore(e,w): Throws an exception if w is over the before first position,
otherwise an extra element e is added to the list before w.

11. examine(w): Throws an exception if w is in the before first or after last position,
otherwise returns the element under w .

12. replace(e,w): Throws an exception if w is in the before first or after last position,
otherwise replaces the element under w with e and returns the old element.

13. delete(w): Throws an exception if w is in the before first or after last position,
otherwise deletes and returns the element under w , and places w over the next
element.

c© Cara MacNish & Tim French CITS2200 Lists Slide 6

3.1 Simplifying Assumptions

Allowing multiple windows can introduce problems. Consider the following use of
the List ADT:

Window w1 = new Window();

Window w2 = new Window();

beforeFirst(w1); // Initialise first window

next(w1); // Place over first element

beforeFirst(w2); // Initialise second window

next(w2); // Place over first element

delete(w1); // Delete first element

Our specification doesn’t say what happens to the second window!

For now, we will assume only one window will be used at a single time.

c© Cara MacNish & Tim French CITS2200 Lists Slide 7

4. Block Representation

List is defined on a block (array). . .

public class ListBlock {

private Object[] block; // Holds general objects

private int before; // An index to the before first position

private int after; // iAn ndex to the after last position

block.length−11 2 3 4 5 6 7 8 9 10 11 120
m i s s s p e l t

before = −1 after = 9

c© Cara MacNish & Tim French CITS2200 Lists Slide 8



Constructor

public ListBlock (int size) {

block = new Object[size];

before = -1;

after = 0;

}

block.length−11 2 3 4 5 6 7 8 9 10 11 120
m i s s s p e l t

before = −1 after = 9

c© Cara MacNish & Tim French CITS2200 Lists Slide 9

Windows

Some ADTs we have created have implicit windows — eg Queue has a “window”
to the first item.

There was a fixed number of these, and they were built into the ADT implementation
— eg a member variable first held an index to the block holding the queue.

For lists, the user needs to be able to create arbitrarily many windows ⇒ we
define these as separate objects.

c© Cara MacNish & Tim French CITS2200 Lists Slide 10

For the block representation, they just hold an index. . .

public class WindowBlock {

public int index;

public WindowBlock () {}

}

The index is then initialised by a call to beforeFirst or afterLast.

public void beforeFirst (WindowBlock w) {w.index = before;}

block.length−1

index=−1

ListBlock

WindowBlock

1 2 3 4 5 6 7 8 9 10 11 120
m i s s s p e l t

before = −1 after = 9

c© Cara MacNish & Tim French CITS2200 Lists Slide 11

next and previous simply increment or decrement the window position. . .

public void next (WindowBlock w) throws OutOfBounds {

if (!isAfterLast(w)) w.index++;

else

throw new OutOfBounds("Calling next after list end.");

}

examine and replace are simple array assignments/lookups.

c© Cara MacNish & Tim French CITS2200 Lists Slide 12



Insertion and deletion may require moving many elements
⇒ worst-case performance — linear in size of block

eg. insertBefore

m s s

m i s s s p e l t

l ts p e
1110987654321

109876543210

0

11

From an ‘abstract’ point of view, the window hasn’t moved — it’s still over the
same element. However, the ‘physical’ location has changed.

c© Cara MacNish & Tim French CITS2200 Lists Slide 13

public void insertBefore (Object e, WindowBlock w) throws

OutOfBounds, Overflow {

if (!isFull()) {

if (!isBeforeFirst(w)) {

for (int i = after-1; i >= w.index; i--)

block[i+1] = block[i];

after++;

block[w.index] = e;

w.index++;

}

else throw new OutOfBounds ("Inserting before start.");

}

else throw new Overflow("Inserting in full list.");

}

c© Cara MacNish & Tim French CITS2200 Lists Slide 14

eg. delete

m i s s s p e l t

m i s s p e l t

1110987654321

1110987654321

0

0

The window has moved from an ‘abstract’ point of view, although the ‘physical’
location is the same.

c© Cara MacNish & Tim French CITS2200 Lists Slide 15

5. Singly Linked Representation

? m i s s ?

before after

null

Uses two sentinel cells for before first and after last:

• previous and next always well-defined, even from first or last element

• Constant time implementation for beforeFirst and afterLast

Empty list just has two sentinel cells. . .

c© Cara MacNish & Tim French CITS2200 Lists Slide 16



public class ListLinked {

private Link before;

private Link after;

public ListLinked () {

after = new Link(null, null);

before = new Link(null, after);

}

public boolean isEmpty () {return before.successor == after;}

c© Cara MacNish & Tim French CITS2200 Lists Slide 17

Windows

public class WindowLinked {

public Link link;

public WindowLinked () {link = null;}

}

eg.

public void beforeFirst (WindowLinked w) {w.link = before;}

public void next (WindowLinked w) throws OutOfBounds {

if (!isAfterLast(w)) w.link = w.link.successor;

else

throw new OutOfBounds("Calling next after list end.");

}

Why don’t we just use a Link here?

c© Cara MacNish & Tim French CITS2200 Lists Slide 18

insertBefore and delete

Problem — need previous cell! To find this takes linear rather than constant time.

One solution: insert after and swap items around

m s

s

i

w

m s s

m s s

s

w

w

c© Cara MacNish & Tim French CITS2200 Lists Slide 19

public void insertBefore (Object e, WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) {

w.link.successor = new Link(w.link.item, w.link.successor);

if (isAfterLast(w)) after = w.link.successor;

w.link.item = e;

w.link = w.link.successor;

}

else throw new OutOfBounds ("inserting before start of list");

}

Alternative solution: define window value to be the link to the cell previous to the
cell in the window — Exercise.

c© Cara MacNish & Tim French CITS2200 Lists Slide 20



5.1 Implementing previous

To find the previous element in a singly linked list we must start at the first sentinel
cell and traverse the list to the current window, while storing the previous position. . .

public void previous (WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) {

Link current = before.successor;

Link previous = before;

while (current != w.link) {

previous = current;

current = current.successor;

}

w.link = previous;

}

else throw new OutOfBounds ("Calling previous before start of list.");

}

This is called link coupling — linear in size of list!
c© Cara MacNish & Tim French CITS2200 Lists Slide 21

Note: We have assumed (as in previous methods) that the window passed is a
valid window to this List.

In this case if this is not true, Java will throw an exception when the while loop
reaches the end of the list.

c© Cara MacNish & Tim French CITS2200 Lists Slide 22

6. Performance Comparisons

Operation Block Singly linked
List 1 1
isEmpty 1 1
isBeforeFirst 1 1
isAfterLast 1 1
beforeFirst 1 1
afterLast 1 1
next 1 1
previous 1 n
insertAfter n 1
insertBefore n 1
examine 1 1
replace 1 1
delete n 1

c© Cara MacNish & Tim French CITS2200 Lists Slide 23

In addition to a fixed maximum length, the block representation takes linear time
for insertions and deletions.

The singly linked representation wins on all accounts except previous, which we
address in the next sections. . .

c© Cara MacNish & Tim French CITS2200 Lists Slide 24



7. Doubly Linked Lists

Singly linked list: previous is linear in worst case — may have to search through
the whole list to find the previous window position.

One solution — keep references in both directions!

?

before

m i s ?

after

nullnull

Called a doubly linked list.

Advantage: previous is similar to next — easy to program and constant time.

Disadvantage: extra storage required in each cell, more references to update.

c© Cara MacNish & Tim French CITS2200 Lists Slide 25

8. Circularly Linked Lists

The doubly linked list has two wasted pointers. If we link these round to the other
end. . .

? m i s ?

list

Called a circularly linked list.

Advantages: (over doubly linked)

• Only need a reference to the first sentinel cell.

• Elegant!

c© Cara MacNish & Tim French CITS2200 Lists Slide 26

Redefine Link

public class LinkDouble {

public Object item;

public LinkDouble successor;

public LinkDouble predecessor; // extra cell

Redefine List

public class ListLinkedCircular {

private LinkDouble list; // just one reference

c© Cara MacNish & Tim French CITS2200 Lists Slide 27

Code for previous

public void previous (WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) w.link = w.link.predecessor;

else throw

new OutOfBounds("calling previous before start of list ");

}

Cf. previous previous!

c© Cara MacNish & Tim French CITS2200 Lists Slide 28



9. Performance — List

Operation Block Singly linked Doubly linked
List 1 1 1
isEmpty 1 1 1
isBeforeFirst 1 1 1
isAfterLast 1 1 1
beforeFirst 1 1 1
afterLast 1 1 1
next 1 1 1
previous 1 n 1
insertAfter n 1 1
insertBefore n 1 1
examine 1 1 1
replace 1 1 1
delete n 1 1

c© Cara MacNish & Tim French CITS2200 Lists Slide 29

We see that the doubly linked representation has superior performance. This needs
to be weighed against the additional space overheads.

Rough rule

• previous commonly used ⇒ doubly (circularly) linked

• previous never or rarely used ⇒ singly linked

c© Cara MacNish & Tim French CITS2200 Lists Slide 30

10. The Simplist ADT

The List ADT provides multiple explicit windows — we need to identify and ma-
nipulate windows in any program which uses the code.

If we only need a single window (eg a simple “cursor” editor), we can write a simpler
ADT ⇒ Simplist.

• single, implicit window (like Queue or Stack) — no need for arguments in the
procedures to refer to the window position

We’ll also provide only one window initialisation operation, beforeFirst

We’ll show that, because of the single window, all operations except beforeFirst can
be implemented in constant time using a singly linked list! Uses a technique called
pointer reversal (or reference reversal).

We also give a useful amortized result for beforeFirst which shows it will not be too
expensive over a collection of operations.
c© Cara MacNish & Tim French CITS2200 Lists Slide 31

10.1 Simplist Specification

" Constructor

1. Simplist(): Creates an empty list with two window positions, before first and
after last, and the window over before first.

" Checkers

2. isEmpty(): Returns true if the simplist is empty.

3. isBeforeFirst(): True if the window is over the before first position.

4. isAfterLast(): True if the window is over the after last position.

"Manipulators

5. beforeFirst(): Initialises the window to be the before first position.

6. next(): Throws an exception if the window is over the after last position, other-
wise the window is moved to the next position.

7. previous(): Throws an exception if the window is over the before first position,
otherwise the window is moved to the previous position.

c© Cara MacNish & Tim French CITS2200 Lists Slide 32



8. insertAfter(e): Throws an exception if the window is over the after last position,
otherwise an extra element e is added to the simplist after the window position.

9. insertBefore(e): Throws an exception if the window is over the before first po-
sition, otherwise an extra element e is added to the simplist before the window
position.

10. examine(): Throws an exception if the window is over the before first or after
last positions, otherwise returns the value of the element under the window.

11. replace(e): Throws an exception if the window is over the before first or after last
positions, otherwise replaces the element under the window with e and returns
the replaced element.

12. delete(): Throws an exception if the window is over the before first or after last
positions, otherwise the element under the window is removed and returned, and
the window is moved to the following position.

c© Cara MacNish & Tim French CITS2200 Lists Slide 33

10.2 Singly Linked Representation

Again block and doubly linked versions are possible — same advantages/disadvantages
as the List ADT. Our aim is to show an improvement in the singly linked represen-
tation.

Since the window position is not passed as an argument, we need to store it in the
data structure. . .

public class SimplistLinked {

private Link before;

private Link after;

private Link window;

? m i s s ?

window

null

afterbefore

c© Cara MacNish & Tim French CITS2200 Lists Slide 34

10.3 Reference (or “Pointer”) Reversal

The window starts at before first and can move up and down the list using next
and previous.

Problem

As for the singly linked representation, previous can be found by link coupling, but
this takes linear time.

Solution

Q: What do you always do when you walk into a labyrinth?

c© Cara MacNish & Tim French CITS2200 Lists Slide 35

Solution...

• point successor fields behind you backwards

• point successor fields in front of you forwards

Problem: window cell can only point one way.

Solution: the before first successor no longer needs to reference the first element
of the list (we can always follow the references back). Instead, use it to reference
the cell after the window, and point the window cell backwards.

? m i s s ?

windowbefore

null

after

⇒ reference (pointer) reversal

c© Cara MacNish & Tim French CITS2200 Lists Slide 36



Exercise

public void previous() {

if (!isBeforeFirst) {

}

else throw

new OutOfBounds("calling previous before start of list");

}

What is the performance of previous?

c© Cara MacNish & Tim French CITS2200 Lists Slide 37

Other operations also require reference reversal.

delete. . .

? m i s ?

before window

null

after

insertBefore. . .

? m i s s ?

windowbefore
n

null

after

Disadvantage(?): A little more complex to code.

Advantage: Doesn’t require the extra space overheads of a doubly linked list.

Advantage outweighs disadvantage — you only code once; might use many times!

c© Cara MacNish & Tim French CITS2200 Lists Slide 38

Problem: These operations only reverse one or two references, but what about
beforeFirst? Must reverse references back to the beginning. (Note that previous
and next now modify the list structure.)

⇒ linear in worst case

What about amortized case?. . .

c© Cara MacNish & Tim French CITS2200 Lists Slide 39

10.4 Amortized Analysis

Consider the operation of the window prior to any call to beforeFirst (other than
the first one).

Must have started at the before first position after last call to beforeFirst.

Can only have moved forward by calls to next and insertBefore.

If window is over the ith cell (numbering from 0 at before first), there must have
been i calls to next and insertBefore. Each is constant time, say 1 “unit”.

c© Cara MacNish & Tim French CITS2200 Lists Slide 40



? m i s s ?

windowbefore

0 1 2 3 4 5

null

after

beforeFirst requires i constant time “operations” (reversal of i pointers)
— takes i time “units”.

Total time: 2i. Total number of operations: i + 1.

Average time per operation: ≈ 2

Average time over a sequence of operations is (roughly) constant!

Formally: Each sequence of n operations takes O(n) time; ie each operation takes
constant time in the amortized case.

c© Cara MacNish & Tim French CITS2200 Lists Slide 41

10.5 Performance Comparisons — Simplist

Operation Block Singly linked Doubly linked
Simplist 1 1 1
isEmpty 1 1 1
isBeforeFirst 1 1 1
isAfterLast 1 1 1
beforeFirst 1 1a 1
next 1 1 1
previous 1 1 1
insertAfter n 1 1
insertBefore n 1 1
examine 1 1 1
replace 1 1 1
delete n 1 1

a — amortized bound

c© Cara MacNish & Tim French CITS2200 Lists Slide 42

11. Summary

• Lists generalise stacks and queues by enabling insertion, examination, and dele-
tion at any point in the sequence.

• Insertion, examination, and deletion are achieved using windows on the list.

• Explicit window manipulation is included in the specification of our List ADT.

• A block representation restricts the list size and results in linear time performance
for insertions and deletions.

• A singly linked representation allows arbitrary size lists, and offers constant time
performance in all operations except previous.

c© Cara MacNish & Tim French CITS2200 Lists Slide 43

Doubly (and Circularly) Linked Lists

• Constant time performance on all operations

• Needs extra space

Simplists

• Block, doubly, and circularly linked representations

– same performance as the List ADT

• Singly linked representation with reference reversal

– constant amortized case performance in all operations

c© Cara MacNish & Tim French CITS2200 Lists Slide 44



CITS2200 Data Structures and Algorithms

Topic 10

Maps and Binary Search

• Definitions — what is a map (or function)?

• Specification

• List-based representation (singly linked)

• Sorted block representation

– binary search, performance of binary search

• Performance comparison

Reading: Lambert and Osborne, Sections 13.1, 13.3, and 10.2
c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 1

1. What is a Map (or Function)?

Some definitions. . .

relation — set of n-tuples

eg. {〈1, i, a〉, 〈2, ii, b〉, 〈3, iii, c〉, 〈4, iv, d〉, . . .}

binary relation — set of pairs (2-tuples)

eg. {〈lassie, dog〉, 〈babushka, cat〉, 〈benji, dog〉, 〈babushka, human〉, . . .}

domain — set of values which can be taken on by the first item of a binary relation

eg. {lassie, babushka, benji, felix, tweety}

codomain — set of values which can be taken on by the second item of a binary
relation

eg. {dog, cat, human, bird}

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 2

Example

babushka

human

cat

dog

domain codomain

benji
felix

lassie
tweety

bird

dog is called the image of lassie under the relation

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 3

map (or function) — binary relation in which each element in the domain is mapped
to at most one element in the codomain (many-to-one)

eg.

Affiliation = { 〈 Turing , Manchester 〉
〈 Von Neumann , Princeton 〉
〈 Knuth , Stanford 〉
〈 Minsky , MIT 〉
〈 Dijkstra , Texas 〉
〈 McCarthy , Stanford 〉}

Shorthand notation: eg. affiliation(Knuth) = Stanford

partial map — not every element of the domain has an image under the map (ie,
the image is undefined for some elements)

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 4



2. Aside: Why Study Maps?

A Java method is a function or map — why implement our own map as an ADT?

• Create, modify, and delete maps during use.

eg. a map of affiliations may change over time — Turing started in Cambridge,
but moved to Manchester after the war.

A Java program cannot modify itself (and therefore its methods) during execution
(some languages, eg Prolog, can!)

• Java methods just return a result — we want more functionality (eg. ask “is the
map defined for a particular domain element?”)

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 5

3. Map Specification

" Constructor

1.Map(): create a new map that is undefined for all domain elements.

" Checkers

2. isEmpty(): return true if the map is empty (undefined for all domain elements),
false otherwise.

3. isDefined(d): return true if the image of d is defined, false otherwise.

"Manipulators

4. assign(d,c): assign c as the image of d.

5. image(d): return the image of d if it is defined, otherwise throw an exception.

6. deassign(d): if the image of d is defined return the image and make it undefined,
otherwise throw an exception.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 6

4. List-based Representation

A map can be considered to be a list of pairs. Providing this list is finite, it can be
implemented using one of the techniques used to implement the list ADT.

Better still, it can be built using the list ADT!

(Providing it can be done efficiently — recall the example of overwrite, using insert
and delete, in a text editor based on the list ADT.)

Question: Which List ADT should we use?

• Require arbitrarily many assignments.

• Do we need previous?

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 7

Implementation. . .

public class MapLinked {

private ListLinked list;

public MapLinked () {

list = new ListLinked();

}

}

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 8



4.1 Pairs

We said a (finite) map could be considered a list of pairs — need to define a Pair
object. . .

public class Pair {

public Object item1; // the first item (or domain item)

public Object item2; // the second item (or codomain item)

public Pair (Object i1, Object i2) {

item1 = i1;

item2 = i2;

}

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 9

// determine whether this pair is the same as the object passed

// assumes appropriate ‘‘equals’’ methods for the components

public boolean equals(Object o) {

if (o == null) return false;

else if (!(o instanceof Pair)) return false;

else return item1.equals( ((Pair)o).item1) &&

item2.equals( ((Pair)o).item2);

}

// generate a string representation of the pair

public String toString() {

return "< "+item1.toString()+" , "+item2.toString()+" >";

}

}

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 10

4.2 Example — Implementation of image

public Object image (Object d) throws ItemNotFound {

WindowLinked w = new WindowLinked();

list.beforeFirst(w);

list.next(w);

while (!list.isAfterLast(w) &&

!((Pair)list.examine(w)).item1.equals(d) ) list.next(w);

if (!list.isAfterLast(w)) return ((Pair)list.examine(w)).item2;

else throw new ItemNotFound("no image for object passed");

}

Notes:

1. !list.isAfterLast(w)must precede list.examine(w) in the condition for
the loop — why??

2. Note use of parentheses around casting so that the field reference (eg .item1)
applies to the cast object (Pair rather than Object).

3. Assumes appropriate equals methods for each of the items in a pair.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 11

4.3 Performance

Map and isEmpty make trivial calls to constant-time list ADT commands.

The other four operations all require a sequential search within the list ⇒ linear
in the size of the defined domain (O(n))

Performance using (singly linked) List ADT

Operation
Map 1
isEmpty 1
isDefined n
assign n
image n
deassign n

If the maximum number of pairs is predefined, and we can specify a total ordering
on the domain, better efficiency is possible. . .

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 12



5. Sorted-block Representation

Some of the above operations take linear time because they need to search for a
domain element. The above program does a linear search.

Q: Are any more efficient searches available for arbitrary linked list?

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 13

5.1 Party Games. . .

Q: I’ve chosen a number between 1 and 1000. What is it?

Q: I’ve chosen a number between 1 and 1000. If you make an incorrect guess I’ll
tell whether its higher or lower. You have 10 guesses. What is it?

Q: I’m going to choose a number between 1 and n. You have 5 guesses. What is
the maximum value of n for which you are certain to get my number right?

Exercise: Write a recursive Java method guessrange(m) that returns the maxi-
mum number n for which you can always obtain a correct answer with m guesses.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 14

5.2 Binary Search

An algorithm for binary search. . .

u

l

m
u’

m’

u’’

l’’
m’’

l’’’=u’’’

l’

d
d

d
d

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 15

Assume block is defined as:

private Pair[] block;

Then binary search can be implemented as follows. . .

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 16



// recursive implementation of binary search

// uses String representations generated by toString()

// for comparison

// returns index to the object if found, or -1 if not found

protected int bSearch (Object d, int l, int u) {

if (l == u) {

if (d.toString().compareTo(block[l].item1.toString()) == 0)

return l;

else return -1;

}

else {

int m = (l + u) / 2;

if (d.toString().compareTo(block[m].item1.toString()) <= 0)

return bSearch(d,l,m);

else return bSearch(d,m+1,u);

}

}

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 17

Note: compareTo is an instance method of String — returns 0 if its argument
matches the String, a value < 0 if the String is lexicographically less than the
argument, and a value > 0 otherwise.

Exercise: Can bSearch be implemented using only the abstract operations of the
list ADT?

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 18

5.3 Performance of Binary Search

We will illustrate performance in two ways.

One way of looking at the problem, to get a feel for it, is to consider the biggest
list of pairs we can find a solution for with m calls to bSearch.

Calls to bSearch Size of list
1 1
2 1 + 1
3 2 + 1 + 1
4 4 + 2 + 1 + 1
...
m (2m−2 + 2m−3 + · · · + 21 + 20) + 1

= (2m−1 − 1) + 1
= 2m−1

That is, n = 2m−1 or m = log2 n + 1.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 19

This view ignores the “intermediate” size lists — those which aren’t a maximum
size for a particular number of calls.

An alternative is to look at the number of calls needed for increasing input size.
Can be expressed as a recurrence relation. . .

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 20



T1 = 1
T2 = 1 + T1 = 2
T3 = 1 + T2 = 3
T4 = 1 + T2 = 3
T5 = 1 + T3 = 4
T6 = 1 + T3 = 4
T7 = 1 + T4 = 4
T8 = 1 + T4 = 4
T9 = 1 + T5 = 5

...

The rows for which n is an integer power of 2. . .

T1 = 1
T2 = 1 + T1 = 2
T4 = 1 + T2 = 3
T8 = 1 + T4 = 4

...

. . . correspond to those in the earlier table.
c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 21

For these rows we have

T20 = 1

T2m = 1 + T2m−1

= 1 + 1 + T2m−2

...

= 1 + 1 + · · · + 1
︸ ︷︷ ︸

m+1 times

= m + 1

Substituting n = 2m or m = log2 n once again gives

Tn = log2 n + 1.

What about the cases where n is not an integer power of 2?
⇒ Exercises.

It can be shown (see Exercises) that Tn is O(log n).

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 22

6. Comparative Performance of Operations

isDefined and image simply require binary search, therefore they are O(logn) —
much better than singly linked list representation.

However, since the block is sorted, both assign and deassign may need to move
blocks of items to maintain the order. Thus they are

max(O(logn), O(n)) = O(n).

In summary. . .

Operation Linked List Sorted Block
Map 1 1
isEmpty 1 1
isDefined n log n
assign n n
image n log n
deassign n n

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 23

Sorted block may be best choice if:

1. map has fixed maximum size

2. domain is totally ordered

3. map is fairly static — mostly reading (isDefined, image) rather than writing
(assign, deassign)

Otherwise linked list representation is probably better.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 24



7. Arrays as Maps

We have seen two representations for maps:

• linked list — linear time accesses.

• sorted block — logarithmic for reading, linear for writing.

One very frequently used subtype of the map is an array. An array is simply a map
(function) whose domain is a cross product of (that is, tuples from) sets of ordinals.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 25

We will assume all domain items are tuples of integers.

eg. The array

1 2 3 4 5
false 6.6 2.8 0.4 6.0 0.1
true 3.4 7.2 9.6 4.0 9.9

could be represented by the map

{〈〈0, 1〉, 6.6〉, 〈〈0, 2〉, 2.8〉, 〈〈0, 3〉, 0.4〉, . . . ,
. . . , 〈〈1, 4〉, 4.0〉, 〈〈1, 5〉, 9.9〉}.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 26

We will also assume the arrays are bounded in size, so we can store the items in
a contiguous block of memory locations. (This can be simulated in Java using a
1-dimensional array.)

An addressing function can be used to translate the array indices into the actual
location of the item in the block.

Accesses are more efficient for this subtype of maps — constant time in all opera-
tions.

⇒ good example of a subtype over which operations are more efficient.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 27

7.1 Specification

" Constructors

1. Array(): creates a new array that is undefined everywhere.

"Manipulators

2. assign(d,c): assigns c as the image of d.

3. image(d): returns the image of tuple d if it is defined, otherwise throws an
exception.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 28



7.2 Lexicographically Ordered Representations

Lexicographic Ordering with 2 Indices

Pair 〈i, j〉 is lexicographically earlier than 〈i′, j ′〉 if i < i′ or (i = i′ and j < j ′).

Best illustrated by an array with indices of type char:
first index: a,...,d
second index: a,...,e

Then entries are indexed in the order

〈a, a〉, 〈a, b〉, 〈a, c〉, 〈a, d〉, 〈a, e〉, 〈b, a〉, 〈b, b〉, . . . 〈d, d〉, 〈d, e〉

⇒ ‘alphabetic’ order (lexicon ≈ dictionary).

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 29

a b c d e
a 1 2 3 4 5
b 6 7 8 9 10
c 11 12 13 14 15
d 16 17 18 19 20

Also called row-major order.

Implementation straightforward — indexed block (from 1 to 20 in the example).

Wish to access entries in constant time.

Addressing function: α : 1..m× 1..n → N

α(i, j) = (i− 1)× n + j 1 ≤ i ≤ m, 1 ≤ j ≤ n

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 30

Reverse-lexicographic Order

Similar to lexicographic, but indices swapped around. . .

Pair 〈i, j〉 is reverse-lexicographically earlier than 〈i′, j ′〉 if j < j ′ or (j = j ′ and
i < i′).

a b c d e
a 1 5 9 13 17
b 2 6 10 14 18
c 3 7 11 15 19
d 4 8 12 16 20

Also called column-major order.

Addressing function:

α(i, j) = (j − 1)×m + i 1 ≤ i ≤ m, 1 ≤ j ≤ n

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 31

7.3 Shell-ordered Representation

An alternative to lexicographic ordering that has advantages in terms of extendibility.

a b c d e
a 1 2 5 10 17
b 4 3 6 11 18
c 9 8 7 12 19
d 16 15 14 13 20

25 24 23 22 21

Built up shell by shell.

The kth shell contains indices 〈i, j〉 such that k = max(i, j).

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 32



Notice that the kth shell “surrounds” a block containing (k − 1)2 cells, and forms
a block containing k2 cells.

⇒ To find entries in the first half of the shell, add to (k − 1)2. To find entries
in the second half of the shell, subtract from k2.

Addressing function:

α(i, j) =











(k − 1)2 + i i < k
k2 + 1− j otherwise

k = max(i, j).

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 33

Disadvantage

May waste a lot of space. Worst case is a one-dimensional array of size n — wastes
n2 − n cells.

A related problem occurs with all these representations when only a small number
of the entries are used.

eg. matrices in which most entries are zero.

In this case more complex schemes can be used — trade space for performance.
See Wood, Sec. 4.4.

Advantage

• All arrays use the same addressing function — independent of number of rows
and columns.

• Extendibility. . .

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 34

7.4 Extendibility

In lexicographic ordering new rows can be added (if memory is available) without
changing the values assigned to existing cells by the addressing function.

a b c d e
a 1 2 3 4 5
b 6 7 8 9 10
c 11 12 13 14 15
d 16 17 18 19 20
e 21 22 23 24 25
f 26 27 28 29 30

α(i, j) = (i− 1)× n
︸︷︷︸

no change
+ j 1 ≤ i ≤ m, 1 ≤ j ≤ n

We say the lexicographic addressing function is row extendible.

Adding a row takes O(size of row).
c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 35

However it is not column extendible. Adding a new column means changing the
values, and hence locations, of existing entries.

Q: What is an example of a worst case array for adding a column?

This is O(size of array) time operation.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 36



Similarly, reverse lexicographic ordering is column extendible. . .

a b c d e f g
a 1 5 9 13 17 21 25
b 2 6 10 14 18 22 26
c 3 7 11 15 19 23 27
d 4 8 12 16 20 24 28

α(i, j) = (j − 1)× m
︸︷︷︸

no change
+ i 1 ≤ i ≤ m, 1 ≤ j ≤ n

. . . but not row extendible.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 37

Shell ordering, on the other hand, is both row and column extendible. . .

a b c d e f
a 1 2 5 10 17 26
b 4 3 6 11 18 27
c 9 8 7 12 19 28
d 16 15 14 13 20 29
e 25 24 23 22 21 30

36 35 34 33 32 31

This is because the addressing function is independent of m and n. . .

α(i, j) =











(k − 1)2 + i i < k
k2 + 1− j otherwise

k = max(i, j).

for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 38

7.5 Performance

Operation Lexicographic Reverse-lexicographic Shell
Array 1 1 1
Assign 1 1 1
Image 1 1 1

Accesses are more efficient for this subtype of maps — constant time in all opera-
tions.

Disadvantages:

• restricted domain (integers).

• lexicographical based representations are not easily extendible — they require
moving elements should additional columns/rows be added.

• shell-ordered representation waste space for non-square arrays.

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 39

8. Summary

• A map (or function) is a many-to-one binary relation.

• Implementation using linked list

– can be arbitrarily large

– reading from and writing to the map takes linear time

• Sorted block implementation

– fixed maximum size

– requires ordered domain

– reading is logarithmic, writing is linear

• Arrays are a commonly used subtype of maps which can be treated more effi-
ciently

– implemented using a 1D block of memory and an addressing function

c© Cara MacNish & Tim French CITS2200 Maps and Binary Search Slide 40



CITS2200 Data Structures and Algorithms

Topic 11

Trees

•Why trees?

• Binary trees
– definitions: size, height, levels, skinny, complete

• Trees, forests and orchards

• Tree traversal
– depth-first, level-order
– traversal analysis

Reading: Lambert and Osborne, Chapter 11
c© Cara MacNish & Tim French CITS2200 Trees Slide 1

1. Why Study Trees?

Wood. . .

“Trees are ubiquitous.”

Examples. . .

genealogical trees organisational trees
biological hierarchy trees evolutionary trees
population trees book classification trees
probability trees decision trees
induction trees design trees
graph spanning trees search trees
planning trees encoding trees
compression trees program dependency trees
expression/syntax trees gum trees
... ...

Also, many other data structures are based on trees!

c© Cara MacNish & Tim French CITS2200 Trees Slide 2

2. Binary Trees

Definition

A binary (indexed) tree T of n nodes, n ≥ 0, either:

• is empty , if n = 0, or

• consists of a root node u and two binary trees u(1) and u(2) of n1 and n2 nodes
respectively such that n = 1 + n1 + n2.

– u(1): first or left subtree

– u(2): second or right subtree

The function u is called the index.

c© Cara MacNish & Tim French CITS2200 Trees Slide 3

u(1)

u(2)

u

n=0 n=1 n=2 n=2 n=3

empty tree
(external node)

node
(internal node)

edge, arc

We will often omit external nodes. . .

c© Cara MacNish & Tim French CITS2200 Trees Slide 4



More terminology. . .

Definition

Let w1, w2 be the roots of the subtrees u1, u2 of u. Then:

• u is the parent of w1 and w2.

• w1, w2 are the (left and right) children of u. u(i) is also called the ith child.

• w1 and w2 are siblings.

Grandparent, grandchild , etc are defined as you would expect.

A leaf is an (internal) node whose left and right subtrees are both empty (external
nodes).

The external nodes of a tree define its frontier.

c© Cara MacNish & Tim French CITS2200 Trees Slide 5

In the following assume T is a tree with n ≥ 1 nodes.

Definition

Node v is a descendant of node u in T if:

1. v is u, or

2. v is a child of some node w, where w is a descendant of u.

Proper descendant: v /= u

Left descendant: u itself, or descendant of left child of u

Right descendant: u itself, or descendant of right child of u

Q: How would you define “v is to the left of u”?

Q: How would you define descendant without using recursion?

c© Cara MacNish & Tim French CITS2200 Trees Slide 6

2.1 Size and Height of Binary Trees

The size of a binary tree is the number of (internal) nodes.

The height of a binary tree T is the length of the longest chain of descendants.
That is:

• 0 if T is empty,

• 1+max(height(T1), height(T2)) otherwise, where T1 and T2 are subtrees of the
root.

The height of a node u is the height of the subtree rooted at u.

c© Cara MacNish & Tim French CITS2200 Trees Slide 7

The level of a node is the “distance” from the root. That is:

• 0 for the root node,

• 1 plus the level of the node’s parent, otherwise.

11

2 1

3

4

1

2

0

1

2

3 3

22

1

c© Cara MacNish & Tim French CITS2200 Trees Slide 8



2.2 Skinny and Complete Trees

Since we will be doing performance analyses of tree representations, we will be
interested in worst cases for height vs size.

skinny — every node has at most one child (internal) node

complete (fat)— external nodes (and hence leaves) appear on at most two adjacent
levels

For a given size, skinny trees are the highest possible, and complete trees the lowest
possible.

c© Cara MacNish & Tim French CITS2200 Trees Slide 9

We also identify the following subclasses of complete:

perfect — all external nodes (and leaves) on one level

left-complete — leaves at lowest level are in leftmost position

c© Cara MacNish & Tim French CITS2200 Trees Slide 10

2.3 Relationships between Height and Size

The above relationships can be formalised/extended to the following:

1. A binary tree of height h has size at least h.

2. A binary tree of height h has size at most 2h − 1.

3. A binary tree of size n has height at most n.

4. A binary tree of size n has height at least 0log(n + 1)1.

Exercise

For each of the above, what class of binary tree represents an upper or lower bound?

Exercise

Prove (2).

c© Cara MacNish & Tim French CITS2200 Trees Slide 11

3. Trees, Forests, and Orchards

A general tree or multiway (indexed) tree is defined in a similar way to a binary tree
except that a parent node does not need to have exactly two children.

Definition

A multiway (indexed) tree T of n nodes, n ≥ 0, either:

• is empty, if n = 0, or

• consists of a root node u, an integer d ≥ 1 called the degree of u, and d multiway
trees u(1), u(2), . . . , u(d) with sizes n1, n2, . . . , nd respectively such that

n = 1 + n1 + n2 + · · · + nd.

c© Cara MacNish & Tim French CITS2200 Trees Slide 12



A tree is a d-ary tree if du = d for all (internal) nodes u. We have already looked
at binary (2-ary) trees. Above is a unary (1-ary) tree and a ternary (3-ary) tree.

A tree is an (a, b)-tree if a ≤ du ≤ b, (a, b ≥ 1), for all u. Thus the above are all
(1,3)-trees, and a binary tree is a (2,2)-tree.

c© Cara MacNish & Tim French CITS2200 Trees Slide 13

Some trees of tree types!

trees

(a,b)-trees

d-ary trees

binary trees

trees

skinny complete

left complete

perfect

is a subtype of

c© Cara MacNish & Tim French CITS2200 Trees Slide 14

3.1 Forests and Orchards

Removing the root of a tree leaves a collection of trees called a forest. An ordered
forest is called an orchard . Thus:

forest — (possibly empty) set of trees

orchard — (possibly empty) queue or list of trees

c© Cara MacNish & Tim French CITS2200 Trees Slide 15

3.2 Annotating Trees

The trees defined so far have no values associated with nodes. In practice it is
normally such values that make them useful.

We call these values annotations or labels.

eg. a syntax or formation tree for the expression −3 + 4 ∗ 7

+

- *

3 74

c© Cara MacNish & Tim French CITS2200 Trees Slide 16



eg. The following is a probability tree for a problem like:

“Of the students entering a language course, one half study French, one
third Indonesian, and one sixth Warlpiri. In each stream, half the students
choose project work and half choose work experience. What is the prob-
ability that Björk, a student on the course, is doing Warlpiri with work
experience?”

1/3
1/3 1/3

1/2 1/2 1/2 1/2 1/21/2

In examples such as this one, it often seems more natural to associate labels with
the “arcs” joining nodes. However, this is equivalent to moving the values down to
the nodes.

As with the list ADT, we will associate elements with the nodes.

c© Cara MacNish & Tim French CITS2200 Trees Slide 17

4. Tree Traversals

Why traverse?

• search for a particular item

• test equality (isomorphism)

• copy

• create

• display

We’ll consider two of the simplest and most common techniques:

depth-first — follow branches from root to leaves

breadth-first (level-order) — visit nodes level by level

(More in Algorithms or Algorithms for AI. . . !)

c© Cara MacNish & Tim French CITS2200 Trees Slide 18

4.1 Depth-first Traversal

Preorder Traversal

(Common garden “left to right”, “backtracking”, depth-first search!)

if(!t.isEmpty()) {
visit root of t;
perform preorder traversal of left subtree;
perform preorder traversal of right subtree;

}

-

1 2

3

4 5

6
+

+

x

x

c© Cara MacNish & Tim French CITS2200 Trees Slide 19

(Generates a prefix expression

+× + 1 2 3−× 4 5 6

Sometimes used because no brackets are needed — no ambiguity.)

c© Cara MacNish & Tim French CITS2200 Trees Slide 20



Postorder Traversal

if(!t.isEmpty()) {
perform postorder traversal of left subtree;
perform postorder traversal of right subtree;
visit root of t;

}

-

1 2

3

4 5

6
+

+

x

x

(Generates a postfix expression

1 2 + 3× 4 5× 6− +

Also non-ambiguous — as used by, eg. HP calculators.)
c© Cara MacNish & Tim French CITS2200 Trees Slide 21

Inorder Traversal

if(!t.isEmpty()) {
perform inorder traversal of left subtree;
visit root of t;
perform inorder traversal of right subtree;

}

-

1 2

3

4 5

6
+

+

x

x

(Generates an infix expression

1 + 2× 3 + 4× 5− 6

Common, easy to read, but ambiguous.)
c© Cara MacNish & Tim French CITS2200 Trees Slide 22

4.2 Level-order (Breadth-first) Traversal

Starting at root, visit nodes level by level (left to right):

-

1 2

3

4 5

6
+

+

x

x

-

1 2

3

4 5

6
+

+

x

x

Doesn’t suit recursive approach. Have to jump from subtree to subtree.

Solution:

• need to keep track of subtrees yet to be visited — ie need a data structure to
hold (windows to) subtrees (or Orchard)

• each internal node visited spawns two new subtrees

• new subtrees visited only after those already waiting
c© Cara MacNish & Tim French CITS2200 Trees Slide 23

⇒ Queue of (windows to) subtrees!

Algorithm

place tree (root window) in empty queue q;
while (!q.isEmpty()) {

dequeue first item;
if (!external node) {

visit its root node;
enqueue left subtree (root window);
enqueue right subtree (root window);

}
}

c© Cara MacNish & Tim French CITS2200 Trees Slide 24



4.3 Traversal Analysis

Time

The traversals we have outlined all take O(n) time for a binary tree of size n.

Since all n nodes must be visited, we require Ω(n) time
⇒ asymptotic performance cannot be improved.

c© Cara MacNish & Tim French CITS2200 Trees Slide 25

Space

Depth-first: Recursive implementation requires memory (from Java’s local variable
stack) for each method call ⇒ proportional to height of tree

• worst case: skinny, size n implies height n

• expected case: much better (depends on distribution considered — see Wood
Section 5.3.3)

• best case: exercise. . .

Iterative implementation is also possible.

c© Cara MacNish & Tim French CITS2200 Trees Slide 26

Level-order : Require memory for queue.

Depends on tree width — maximum number of nodes on a single level.

Maximum length of queue is bounded by twice the width.

• best case: skinny, width 2

• worst case: exercise. . .

c© Cara MacNish & Tim French CITS2200 Trees Slide 27

5. Summary

• Trees are not only common “in their own right”, but form a basis for many other
data structures.

• Definitions — binary trees, trees, forests, orchards, annotated trees

• Properties — size, height, level, skinny, complete, perfect, d-ary, (a, b)

• Covered important, common traversal strategies

– depth-first: preorder, postorder, inorder

– level-order (breadth-first)

Next — tree representations. . .

c© Cara MacNish & Tim French CITS2200 Trees Slide 28



CITS2200 Data Structures and Algorithms

Topic 12

Tree Implementations

• Tree Specifications

• Block representation of Bintree

• Recursive representations of Bintree

• Representation of multiway Trees

Reading: Lambert and Osborne, Sections 11.2-11.6
c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 1

1. Specifications

Binary Tree (Bintree)

Just like the list ADT, we will have windows over nodes. The operations are similar,
with previous and next replaced by parent and child and so on. Some are a little
more complex because of the more complex structure. . .

" Constructor

1. Bintree(): creates an empty binary tree.

" Checkers

2. isEmpty(): returns true if the tree is empty, false otherwise.

3. isRoot(w): returns true if w is over the root node (if there is one), false other-
wise.

4. isExternal(w): returns true if w is over an external node, false otherwise.

5. isLeaf(w): returns true if w is over a leaf node, false otherwise.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 2

"Manipulators

6. initialise(w): set w to the window position of the single external node if the tree
is empty, or the window position of the root otherwise.

7. insert(e,w): if w is over an external node replace it with an internal node with
value e (and two external children) and leave w over the internal node, otherwise
throw an exception.

8. child(i,w): throw an exception if w is over an external node or i is not 1 or 2,
otherwise move the window to the i-th child.

9. parent(w): throw an exception if the tree is empty or w is over the root node,
otherwise move the window to the parent node.

10. examine(w): if w is over an internal node return the value at that node, otherwise
throw an exception.

11. replace(e,w): if w is over an internal node replace the value with e and return
the old value, otherwise throw an exception.

12. delete(w): throw an exception if w is over an external node or an internal node
with no external children, otherwise replace the node under w with its internal
child if it has one, or an external node if it doesn’t.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 3

Alternatives for child. . .

1. left(w): throw an exception if w is over an external node, otherwise move the
window to the left (first) child.

2. right(w): throw an exception if w is over an external node, otherwise move the
window to the right (second) child.

— can be convenient for binary trees, but does not extend to (multiway) trees.

Note: as with the list ADT, the Window class can be replaced by a treeIterator
to navigate and manipulate the tree.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 4



Tree

Just modify Bintree to deal with more children (higher branching). . .

1. degree(w): returns the degree of the node under w.

2. child(i,w): throw an exception if w is over an external node or i is not in the
range 1, . . . , d where d is the degree of the node, otherwise move the window
to the i-th child.

Orchard

Since an orchard is a list (or queue) of trees, an orchard can be specified simply
using List (or Queue) and Tree (or Bintree)!

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 5

2. Block Representation of Bintree

Based on an infinite binary tree — every internal node has two internal children. . .

1

3

4 5 6 7

8 9 10 11 12 13 14 15

2

This is called a level order enumeration.

Every binary tree is a prefix of the infinite binary tree — can be obtained by pruning
subtrees.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 6

Example. . .

1

3

4 5 6 7

8 9 10 11 12 13 14 15

2

a b c d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e f g h

a

b

1

2 3

4 6 e 7

12 13

d

c

f

g h

The size of block needed is determined by the height of tree.

Level-order representation is implicit — branches are not represented explicitly.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 7

2.1 Time Performance

Level-order representation has the following properties:

1. i(u) = 1 iff u is the root.

2. Left child of u has index 2i(u).

3. Right child of u has index 2i(u) + 1.

4. If u is not the root, then the parent of u has index i(u)/2 (where / is integer
division).

These properties are important — allow constant time movement between nodes

⇒ all Bintree operations are constant time!

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 8



2.2 Space

Level-order representation can waste a great deal of space.

Q: What is the worst case for memory consumption?

Q: What is the best case for memory consumption?

A binary tree of size n may require a block of size 2n − 1

⇒ exponential increase in size!

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 9

3. Recursive Representations of Bintree

Basic Structure

Recall List:

• recursive definition

• recursive singly linked structure — one item, one successor

We can do the same with binary trees — difference is we now need two “successors”.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 10

Recall the (recursive) definition of a binary tree — can be briefly paraphrased as:

A binary tree either:

• is empty, or

• consists of a root node u and two binary trees u(1) and u(2). The function
u is called the index.

It can be implemented as follows.

First, instead of Link, use a TreeCell. . .

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 11

public class TreeCell {

public Object nodeValue;

public TreeCell[] children;

public TreeCell(Object v, TreeCell tree1, TreeCell tree2) {

nodeValue = v;

children = new TreeCell[2];

children[0] = tree1;

children[1] = tree2;

}

}

null null null

null null

null

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 12



The children array performs the role of the index u — it holds the “successors”.

An alternative for binary trees is. . .

public class TreeCell {

public Object nodeValue;

public TreeCell left;

public TreeCell right;

public TreeCell(Object v, TreeCell tree1, TreeCell tree2) {

nodeValue = v;

left = tree1;

right = tree2;

}

}

but this doesn’t extend well to trees in general. The previous version can easily be
extended to multiway trees by initialising larger arrays of children.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 13

Windows

Just like lists, we wish to allow multiple windows for manipulating trees. We will
therefore define a “companion” window class.

In the notes and exercises on lists, we considered a representation in which the win-
dow contained a member variable that referenced the cell previous to the (abstract)
window position. This was so that insertBefore and delete could be implemented
in constant time without moving data around.

Similar problems arise in trees with delete, where we want to point the parent node
to a different child.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 14

We will use the same technique — the window class will store a reference to the
parent of the (abstract) window node

⇒ requires a “before root” cell.

nullbeforeRoot

null null

null

for abstract window over root cell

window class must reference before root cell

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 15

Since the parent has two children, we need to know which the window is over, so
we include a branch number. . .

beforeRoot

1
TreeWindow

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 16



public class TreeWindow {

public TreeCell parentnode;

public int childnum;

public TreeWindow () {}

}

For example. . .

public void initialise(TreeWindow w) {

w.parentnode = beforeRoot;

w.childnum = 0;

}

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 17

External Nodes

Two choices:

1. If values are attached to external nodes, the external nodes must be represented
by cells. They can be distinguished from internal nodes by a null reference as
the left child.

0beforeRoot

null

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 18

2. If external nodes have no values they can be represented simply by null refer-
ences. . .

0beforeRoot

null

We will assume external nodes do not store values, and represent them by null
references.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 19

3.1 Examples

Constructor

public BintreeLinked () {

beforeRoot = new TreeCell(null, null, null);

}

Checkers

public boolean isEmpty() {return beforeRoot.children[0] == null;}

public boolean isExternal(TreeWindow w) {

return w.parentnode.children[w.childnum] == null;

}

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 20



public boolean isLeaf(TreeWindow w) {

return !isExternal(w)

&& w.parentnode.children[w.childnum].children[0] == null

&& w.parentnode.children[w.childnum].children[1] == null;

}

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 21

Manipulators

Exercises. . .

public Object examine(TreeWindow w) throws OutOfBounds {

if (!isExternal(w))

else throw new OutOfBounds("examining external node");

}

public void insert(Object e, TreeWindow w) throws OutOfBounds {

if (isExternal(w))

else

throw new OutOfBounds("inserting over internal node");

}

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 22

3.2 Performance

Clearly all operations except parent can be implemented to run in constant time.

parent in Bintree is like previous in List.

Can be achieved in a similar manner to link coupling — search the tree from the
before-root node. Recall traversals from Topic 11!

Takes O(n) time in worst case for binary tree of size n.

Q: What representation could we use to obtain a constant time implementation of
parent?

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 23

3.3 Sbintree

Just like the simplist ADT, if a tree only requires one window, we can implement it
using reference reversal!

Analogous to Simplist (although a bit more involved):

• implicit window

• constant time implementation of parent

• initialise is linear time, but constant time in the amortized case

• avoid stack memory for recursion during depth-first traversal

See Wood, Section 5.5.4.

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 24



4. Trees

Recursive representation can be extended to multiway trees — just increase the size
of the children array. . .

public class TreeCell {

public Object nodeValue;

public TreeCell[] children;

public TreeCell(int degree, Object v, TreeCell tree1,...) {

nodeValue = v;

children = new TreeCell[degree];

children[0] = tree1;

children[1] = tree2;

.

.

.

}

}

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 25

5. Summary

• Block representation of Bintree

– time efficient — constant time in all operations

– not space efficient — may waste nearly 2n cells

• Recursive representation of Bintree

– a generalisation of List

– choices for window and external node representations

– parent is linear time (traversal), all other operations are constant time

• Tree

– generalisation of Bintree

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 26

c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 27 c© Cara MacNish & Tim French CITS2200 Tree Implementations Slide 28



CITS2200 Data Structures and Algorithms

Topic 13

Priority Queues

• The PQueue ADT

• A linked implementation

• Heaps

• A heap implementation of a priority queue

• Heapsort

Reading: Lambert and Osborne, Sections 8.8 and 12.1
c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 1

1. Priority Queues

A priority queue is an extension of the queue ADT. In a priority queue however,
when an item is added to the queue, it is assigned a priority (an integer) to indicate
the relative importance of the item.

Instead of storing items in chronological order, a priority queue archives items with
the highest priority before all others.

Items are no longer removed on a first-in-first-out basis — items are removed de-
pending on their priority, with items of equal priority processed in chronological
order.

Example uses include:

• scheduling services — eg distributing CPU time among several threads

• optimization algorithms — such as Prim’s algorithms, Dijkstra’s Algorithm, A∗

• sorting

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 2

2. PQueue Specification

" Constructors

1. PQueue(): initialises an empty priority queue.

" Checkers

2. isEmpty(): returns true if the priority queue is empty.

"Manipulators

3. enqueue(e, k): places e in the priority queue with key (or priority) k, or throws
an exception if k is negative. The item is placed in front of all elements with
lesser priority, but behind all others.

4. examine(): returns the element at the front of the queue, or throws an exception
if the queue is empty.

5. dequeue(): removes the element at the front of the queue and returns it, or
throws an exception if the queue is empty.

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 3

2.1 Example

PQueue p = new PQueue(); []

p.enqueue(’a’, 1); [<a,1>]

p.enqueue(’b’, 3); [<b,3>, <a,1>]

p.enqueue(’c’, 3); [<b,3>, <c,3>, <a,1>]

p.enqueue(’d’, 2); [<b,3>, <c,3>, <d,2>, <a,1>]

p.dequeue(); [<c,3>, <d,2>, <a,1>]
// b is returned.

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 4



3. Linked Implementation

/**
* A Linked Priority Queue for the generic type E
**/
public class PQueueLinked<E> {

// Only one link is required!
private Link<E> front;

// Constructor
public PQueueLinked() {
front = null;

}

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 5

3.1 A Link Inner Class

/**
* An inner class to hold the element, the successor,
* and the priority
**/
private class Link<E> {
E element;
int priority;
Link<E> next;

public Link(E e, int p, Link<E> n) {
this.element = e;
this.priority = p;
this.next = n;

}

}

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 6

3.2 isEmpty, examine, and dequeue

The process of checking to see if the priority queue is empty, examining the front
element, or dequeuing the front element can all be done in the same way as for the
queue ADT.

priority

a 1 b 2 c 3

front

element

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 7

public boolean isEmpty() {return front == null;}

public E examine() throws Exception {
if (!isEmpty()) {
return (E) front.element;

} else throw new Exception("Empty Queue");
}

public E dequeue() throws Exception {
if (!isEmpty()) {
E temp = (E) front.element;
front = front.next;
return temp;

} else throw new Exception("Empty Queue");
}

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 8



3.3 Enqueuing

To enqueue, we start at the front of the queue and keep moving back until we find
some element of lesser priority, or reach the end of the queue.

We then insert the new element in front of the lesser element.

public void enqueue(E e, int p) {
if (isEmpty() || p > front.priority) {
front = new Link<E>(e, p, front);

} else {
Link<E> l = front;
while (l.next != null && l.next.priority >= p) {
l = l.next;

}
l.next = new Link<E>(e, p, l.next);

}
}

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 9

3.4 Performance

• enqueue: This operation is performed by iterating through the queue from the
front to the back until the correct location to insert the new element is found.
In the worst case, the entire queue will be examined ⇒ O(n) where n is the
size of the queue.

• examine: This operation simply returns the element at the front of the queue
⇒ O(1).

• dequeue: This operation returns the element at the front of the queue and
updates the value of front ⇒ O(1).

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 10

4. Heap Implementation

The Heap data structure is based on a binary tree, where each node of the tree
contains an element and a key (an integer) — effectively the priority of the element.

A heap has the added property that the key associated with any node is greater
than or equal to the key associated with either of its children.

⇒ the root of the binary tree has the largest key.

Note also that there is no requirement to order the left and right children of a node.

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 11

5 1 2 6 40 50 11

15 7 55 23

23 78

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

Just like the infinite binary tree, we store the heap as a linear array:

99 23 78 15 7 55 23 5 1 2 6 40 50 11

The bottom level of the binary tree, if not complete, is filled from the left.

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 12



4.1 Parents and Children

Suppose the array A is indexed from 1.

Then A[1] holds the root of the binary tree, which by the heap property is, the
element with the largest key value.

The two children of the root are stored in A[2] and A[3].

In general, the left child of node i is 2i and the right child is 2i + 1.

Conversely, the parent of node i is 3i/24.

⇒ operations to determine both the parent and children of a node are O(1).

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 13

4.2 Heapify

Most of the operations we wish to perform on the heap will alter the data structure.
Often these operations will destroy the heap property and it will have to be restored.

For example, suppose we decide to alter the value associated with one of the nodes
— eg we wish to set A[3] = 10.

5 1 2 6 40 50 11

15 7 55 23

23 78

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 14

Making the change is trivial, but the resulting structure is no longer a heap — the
entry A[3] is no longer larger than both of its children.

5 1 2 6 40 50 11

15 7 55 23

23 10

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 15

We can rectify this by swapping A[3] with the larger of its two children.

5 1 2 6 40 50 11

15 7 10 23

23 55

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

This means that the problem at A[3] has been fixed — however, we may have
introduced a problem at A[6].

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 16



So we now examine A[6] and if it is smaller than its children we perform another
exchange.

We continue recursively checking the swapped child until we restore the heap prop-
erty or reach the end of the tree.

The procedure outlined above, whereby a small element “percolates” down the tree
is called heapify.

Heapify takes a position i in the tree as an argument and iterates down the tree
from i, swapping entries if necessary until the heap property is restored.

Heapify assumes that the two children of i are proper heaps, but that the key value
A[i] may not be larger than the key values of its children.

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 17

5 1 2 6 40 10 11

15 7 50 23

23 55

99

!
!
!

"
"

"

!
!
!

"
"

"

!
!
!

"
"

"

"
"

"

######

$$$$$$

######

$$$$$$

%%%%%%%%%%%%

&&&&&&&&&&&&

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 18

4.3 Complexity of heapify

A balanced binary tree with n elements in it has a height of log n and hence heapify
performs at most log n exchanges.

⇒ heapify is O(logn).

Consider now how all the operations necessary for a priority queue can be accom-
plished by using a heap together with heapify. . .

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 19

4.4 Performance

• enqueue: The key is entered at the end of the array (ie, in the last position in
the tree). The resulting structure may not be a heap, because the value of the
new key may be greater than its parent. If this is the case, exchange the two
keys and proceed to examine the parent. In the worst case, log n exchanges will
have to be done ⇒ O(log n).

• examine: The root of the binary tree is the entry with the largest key value.
Hence, merely return the root of the tree ⇒ O(1).

• dequeue: In this case, we must also delete the root node from the tree and then
restore the heap property. This can be achieved by moving the final entry in the
tree to the newly-vacated root position and then calling heapify(1) to restore
the heap property. This involves a few constant time operations, together with
one call to heapify ⇒ O(logn).

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 20



4.5 Heapsort

The heap data structure allows us to implement a relatively efficient sorting proce-
dure. Suppose we are given an unordered array containing a number of integers (or
objects that can be completely ordered) that we wish to arrange from highest to
lowest. Suppose there are n elements in the array.

Imagine enqueuing each of the elements into a priority queue with a priority equal
to their value. This involves n operations at O(logn) each ⇒ O(n logn).

We can then dequeue each element into an array; the elements being dequeued in
sorted order. This involves n operations at O(log n) each ⇒ O(n log n).

⇒ overall complexity isO(n log n), which is optimal for sorting using comparisons.

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 21

4.6 Pseudo-code for Heapsort

int[] heapSort(int[] arr) {
// Create a priority queue
PQueue p = new PQueue();
// Add in the elements with themselves as the key
for (int i : arr) {
p.enqueue(i, i);

}

// Create a new array to store the result
int[] ans = new int[arr.length];
// Dequeue the elements from the priority queue into ans
for (int i = 0; i < ans.length; i++) {

ans[i] = p.dequeue();
}
return ans;

}

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 22

5. Performance Comparison

Operation Linked Heap
enqueue n log n
examine 1 1
dequeue 1 log n

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 23

6. Summary

• Priority queues behave like queues except elements are enqueued with a priority
and are returned in order of their priority

• Linked representation

– based on maintaining the elements in sorted priority order

– constant time examination and dequeuing

– linear time enqueuing

• Heap representation

– based on maintaining elements in a heap: elements are stored in a binary tree
with the added property that all nodes have a greater than or equal value to
both of its children.

– constant time examination

– logarithmic time enqueuing and dequeuing

c© Cara MacNish & Tim French CITS2200 Priority Queues Slide 24



CITS2200 Data Structures and Algorithms

Topic 14

Sets, Tables, and Dictionaries

• Set specification
• Set representations — characteristic function, lists, ordered lists

• Table specification
• Table representations
• Dictionary specifications
• Dictionary representations — set-based representations, search trees

Reading: Lambert and Osborne, Sections 12.2 and 13.1
Goodrich and Tamassia, Chapter 10
c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 1

1. Introduction

In this section, we examine three ADTs: sets, tables, and dictionaries, used to store
collections of elements with no repetitions.

Note that these names are used (eg in different texts) for a range of similar ADTs
— we define them as follows:

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 2

Set

• used when set-theoretic operations are required

• elements may or may not be ordered

• includes “membership” operations: isEmpty , insert, delete, isMember

• includes “set-theoretic” operations: union, intersection, difference, size, com-
plement

Table

• simpler version of Set without the set-theoretic operations

• elements assumed to be unordered

Dictionary

• like Table but assumes elements are totally ordered

• includes “order related” operations: isPredecessor , isSuccessor , predecessor ,
successor , range

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 3

1.1 Elements, Records, and Keys

Elements may be a single items, or “records” with unique keys (such as those
typically found in databases).

We will usually talk about elements as if they are single items.

eg. “if e1 < e2 then. . . ”

In the case of record elements, this can be considered shorthand for

“if k1 < k2, where k1 is the key of record e1 and k2 is the key of record e2,
then. . . ”

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 4



1.2 Examples

The following are examples of situations where the ADTs might be used:

Set

“I have one set of students who do CITS2200 and one set of students who
do CITS2210. What is the set of students who do both?”

Table

“I begin with the set of students originally enrolled in CITS2200. These
two students joined. This one withdrew. Is a particular student currently
enrolled?”

Dictionary

“Here is the set of students enrolled in CITS2200 ordered by (exact) age.
Which are the students between the ages of 18 and 20?”

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 5

2. Set Specification

" Constructors

1. Set(): create an empty set.

" Checkers

2. isEmpty(): returns true if the set is empty, false otherwise.

3. isMember(e): returns true if e is a member of the set, false otherwise.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 6

"Manipulators

4. size(): returns the cardinality of (number of elements in) the set.

5. complement(): returns the complement of the set (only defined for finite uni-
verses).

6. insert(e): forms the union of the set with the singleton {e}

7. delete(e): removes e from the set

8. union(t): returns the union of the set with t.

9. intersection(t): returns the intersection of the set with t.

10. difference(t): returns the set obtained by removing any items that appear in t.

11. enumerate(): returns the “next” element of the set. Successive calls to enumer-
ate should return successive elements until the set is exhausted.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 7

3. Set Representations

3.1 Characteristic Function Representation

Assume A is a set from some universe U .

The characteristic function of A is defined by:

f(e) =











true (or 1) e ∈ A
false (or 0) otherwise

⇒ thus a set can be viewed as a boolean function.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 8



If U is finite and ‘≤’ is a total order on U , the elements of U can be enumerated
as the sequence

e1, . . . , em

where ei ≤ ej if i < j, and m is the cardinality of U .

The characteristic function maps this sequence to a sequence of 1s and 0s. Thus
the set can be represented as a block of 1s and 0s, or a bit vector . . .

0 0 11011 0
1 2 3 i-1 i i+1 m-1 m

e e e e e e ee1 2 3 i mi-1 i+1 m-1

Sometimes called a bitset — eg. java.util.BitSet

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 9

Advantage

Translates set operations into efficient bit operations:

• insert — or the appropriate bit with 1

• delete — and the appropriate bit with 0

• isMember — is the (boolean) value of the appropriate bit

• complement — complement of a bit vector

• union — or two bit vectors

• intersection — and two bit vectors

• difference — complement and intersection

Also enumerate — can cycle through the m positions reporting 1s.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 10

Performance

• insert, delete, isMember — constant providing index can be calculated in con-
stant time

• complement, union, intersection, difference — O(m); linear in size of universe

• enumerate — O(m) for n calls, where n is size of set

⇒ O(
m

n
) amortized over n calls

Disadvantages

• If the universe is large compared to the size of sets then:

– the latter operations are expensive

– large amount of space wasted

• Requires the universe to be bounded, totally ordered, and known in advance.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 11

3.2 List Representation

An alternative is to represent the set as a list using one of the List representations.
Here, we assume there is no total ordering on the elements.

Performance

Assume we have a set of size p.

insert, delete, isMember — take O(p) time; the best that can be achieved in an
unordered list (recall eSearch)

union — for each item in the first set, check if it is a member of the second, and
if not, add it (to the result)

⇒ O(pq) where p and q are the sizes of the two sets

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 12



Other set operations (intersection, difference) behave similarly.

Note that if both sets grow at the same rate (the worst case), the time performance
is O(p2).

Inefficient because one list must be traversed for each element in the other. Can
we traverse both at the same time. . . ?

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 13

3.3 Ordered List Representation

If the universe is totally ordered, we can obtain more efficient implementations by
merging the two in sorted order.

Assume A can be enumerated as a1, a2, . . . , ap and B can be enumerated as
b1, b2, . . . , bq.

Eg. union

i = 1; j = 1;
do {
if (ai == bj) add ai to C and increment i and j;
else add smaller of ai and bj to C and increment its index;

}
while (i <= p && j <= q);
add any remaining ai’s or b′js to C

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 14

Exercise

Give pseudo-code for the intersection and difference operations.

Performance

Each list is traversed once ⇒ O(p + q) time.

This is much better than O(pq).

If p and q grow at the same rate (worst case), the time performance is now O(p).

Note also that isMember is now O(log p) (recall bSearch)

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 15

4. Table Specification

The Table operations are a subset of the Set operations:

" Constructors

1. Table(): create an empty table.

" Checkers

2. isEmpty(): returns true if the table is empty, false otherwise.

3. isMember(e): returns true if e is in the table, false otherwise.

"Manipulators

4. insert(e): forms the union of the table with the singleton {e}

5. delete(e): removes e from the table

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 16



5. Table Representations

Since the Table operations are a subset of those of Set, the (unordered) List repre-
sentations can be used.

insert, delete, isMember therefore take O(p) time.

The more efficient List representations and the characteristic function representation
are not available since the elements are assumed to be unordered.

The operations can be made more efficient by considering the probability distribution
for accesses over the list and moving more probable (or more frequently accessed)
items to the front — see Wood, Section 8.3.

Later, we’ll look in detail at a more efficient representation of tables using hashing ,
where such operations are close to constant time.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 17

6. Dictionary Specification

" Constructors

1. Dictionary(): creates an empty dictionary.

" Checkers

2. isEmpty(): returns true if the dictionary is empty, false otherwise.

3. isMember(e): returns true if e is a member of the dictionary, false otherwise.

4. isPredecessor(e): returns true if there is an element in the dictionary that pre-
cedes e in the total order, false otherwise.

5. isSuccessor(e): returns true if there is an element in the dictionary that succeeds
e in the total order, false otherwise.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 18

"Manipulators

6. insert(e): adds e (if not already present) to the dictionary in the appropriate
position.

7. predecessor(e): returns the largest element in the dictionary that is smaller than
e if one exists, otherwise throws an exception.

8. successor(e): returns the smallest element in the dictionary that is larger than e
if one exists, otherwise throws an exception.

9. range(p,s): returns the dictionary of all elements that lie between p and s (in-
cluding p and s if present) in the ordering.

10. delete(e): removes item e from the dictionary if it exists.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 19

7. Dictionary Representations

7.1 Representations Based on Set

We have already seen two representations that can be used for Sets when there is
a total ordering on the universe. . .

• characteristic function (bit vector) representation

– time efficiency (eg O(1) for isMember) gained by indexing directly to appro-
priate bits

– bounded — universe fixed in advance

– space wasted if universe is large compared with commonly occurring sets

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 20



• List based (ordered block) representation

– time efficiency (eg O(logn) for isMember) comes from binary search

– bounded

– space usage may be poor if large block is set aside

We now examine a representation which supports a binary-like search but is un-
bounded. . .

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 21

7.2 Binary Search Trees

A binary search tree is a binary tree whose internal nodes are labelled with elements
(or their keys) such that they satisfy the binary search tree condition:

For every internal node u, all nodes in u’s left subtree precede u in the ordering
and all nodes in u’s right subtree succeed u in the ordering.

eg.

miss_piggy

kermit

ernie

grouch

big_bird

bert
cookie_monster

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 22

eg.

big_bird

bert

cookie_monster

ernie

grouch

kermit

miss_piggy

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 23

Searching

If information is stored in a binary search tree, a simple recursive “divide and con-
quer” algorithm can be used to find elements:

if (t.isEmpty()) terminate unsuccessfully;
else {

r becomes the element on the root node of t;
if (e equals r) terminate successfully;
else if (e < r) repeat search on left subtree;
else repeat search on right subtree;

}

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 24



Performance

Depends on the shape of the tree. . .

Exercise

• Best case is a perfect binary tree. What is the performance of isMember?

•Worst case is a skinny binary tree. What is the performance of isMember?

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 25

insert and delete

insert is fairly straightforward

• perform a search for the element as above

• if the element is found, take no further action

• if an empty node is reached, insert a new node containing the element

delete is straightforward if the element is found on a node with at least one external
child — just use the standard Bintree delete operation

Otherwise:

1. replace the deleted element with its predecessor — note that the predecessor will
always have an empty right child

2. delete the predecessor

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 26

miss_piggy

kermit

grouch

big_bird

bert

miss_piggy

kermit

ernie

grouch

big_bird

bert
cookie_monster

cookie_monster

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 27

Balancing Trees

Note that the delete procedure described here has a tendency over time to skew
the tree to the right — as we have seen this will make it less efficient.

Alternative: alternate between replacing with predecessor and successor.

In general, it is beneficial to try to keep the tree as “balanced” or “complete” as
possible to maintain search efficiency.

There are a number of data structures that are designed to keep trees balanced —
B-trees, AVL-trees and Red-black trees.

Note: Java.util.TreeMap uses Red-Black trees in its implementation. In general, for
search trees with guaranteed logarithmic performance, it is better to use this class
than to write your own.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 28



7.3 AVL Trees

We will look at the three types of self-balancing trees, but we will only examine the
operations of AVL trees. (The other trees just involve more complicated versions
of these operations).

An AVL tree is a binary search tree where, for every node, the height of the left and
right subtrees differ by at most one. This means the depth of any external node is
no more than twice the depth of any other internal node.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 29

The picture below demonstrates some AVL-trees. Nodes are marked with the height
of the right sub-tree minus the height of the left sub-tree.

0 0

00

−1

0

0

00

0

2

−1

0

0

000

1

0

0

−1

AVL trees have O(log n) time peformance for searching, inserting, and deleting.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 30

AVL Tree Operations

Since an AVL tree is a binary search tree, the searching algorithm is exactly the
same as for a binary tree.

However, the insertion and deletion operations must be modified to maintain the
balance of the tree.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 31

AVL Tree Insertions

We first find the appropriate place (a leaf node) to add the new element. If the
insertion makes the tree unbalanced, then we locally reorganize the tree (via a
rotation) to restore balance.

To insert an element, we:

1. Insert the element into an external node (as per usual for a binary search tree).

2. Starting with its parent, check each ancestor of the new node to ensure the left
and right subtree heights differ by less than two.

3. If we find a node such that one child has height k − 2 and the other has height
k, then we perform a rotation to restore balance.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 32



Rotation Case I

Suppose u is a node where its left child l has height two less than its right child r,
and the right child of r has height one more than the left child of r.

We rearrange the tree as follows:

k+1

kk−2

k

k−2 k−1 k−2 k−2

k−1 k−1r a

u

l

b a l

u

b

r

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 33

Rotation Case II

Suppose u is a node where its left child l has height two less than its right child r,
and the left child of r has height one more than the right child of r.

We rearrange the tree as follows:

k+1

kk−2

k

k−2 k−2

k−1

k−2

k−1

k−1 k−2a

r r

u

l

b

a

c d

d b

u

l c

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 34

AVL Tree Deletions

Note that both rotations do not increase the height of the sub-tree, so insertion
only needs to be done at the lowest unbalanced ancestor.

To delete an element, we:

• Delete the element (as per usual for a binary search tree).

• Starting with its parent, check each ancestor of the new node to make sure it’s
balanced.

• If any node is not balanced, perform the necessary rotation (as above).

• Continue to check the ancestors of the deleted node up to the root.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 35

Complexity

Rotations are constant time operations.

Insertions and deletions involve searching the tree for the element (O(h), where h
is the height of the tree) and then checking every ancestor of that element (O(h)
in the worst case).

Complexity follows from the claim: the height of an AVL tree is less than 2 log n
where n is the number of elements in the tree.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 36



7.4 B-trees

A B-tree is a tree data structure that allows searching, insertion, and deletion in
amortized logarithmic time.

Each node of a B-tree can contain multiple items and multiple children (these
numbers can be varied to tweak performance).

We will consider 2-3 B-trees, where each node can contain up to two items and up
to three children.

children.

19 34

11 24 31 46

9 13 25 33 60 65454220 22

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 37

If there is just one item in the node, then the B-Tree is organised as a binary search
tree: all items in the left sub-tree must be less than the item in the node, and all
items in the right sub-tree must be greater.

It there are two elements in the node, then:

• all items in the left sub-tree must be less than the smallest item in the node

• all items in the middle sub-tree must be between the two items in the node

• all elements in the right sub-tree must be greater than the largest item in the
node

Also, every non-leaf node must have at least two successors and all leaf nodes must
be at the same level.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 38

7.5 Red-black Trees

A red-black tree is another variation of a binary search tree that is slightly more
efficient (and complicated) than B-trees and AVL trees.

A red-black tree is a binary tree where each node is coloured either red or black
such that the colouring satisfies:

• the root property — the root is black

• the external property — every external node is black

• the internal property — the children of a red node are black

• the depth property — every external node has the same number of black ances-
tors.

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 39

Picture courtesy of Wikimedia Commons

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 40



8. Summary

We have outlined 3 ADTs for use with collections of unique elements or records:

• Set — includes set-theoretic operations, elements may or may not be ordered

• Table — restriction of Set with fewer operations, elements assumed not ordered

• Dictionary — extension of Table, assumes ordering and contains “order-related”
operations

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 41

We have covered a number of representations:

• List — can be used for unordered sets and tables

• ordered list (block) — can improve efficiency for ordered sets and can be used
for bounded dictionaries

• characteristic function — can be very efficient for ordered sets and dictionaries
in certain cases, bounded

• binary search tree — unbounded representation for dictionaries, efficiency better
than List but depends on tree shape

Next — efficient representations for Tables. . .

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 42

c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 43 c© Cara MacNish & Tim French CITS2200 Sets, Tables, and Dictionaries Slide 44



CITS2200 Data Structures and Algorithms

Topic 15

Hash Tables

• Introduction to hashing — basic ideas

• Hash functions

– properties, 2-universal functions, hashing non-integers

• Collision resolution

– bucketing and separate chaining
– open addressing
– dynamic tables — linear hashing

Reading: Lambert and Osbourne, Section 13.2
c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 1

1. Introduction

The Table is one of the most commonly used data structures — central to databases
and related information systems.

In the previous section, we briefly examined a List representation for tables, but this
had linear time access.

Can we do better?

We have seen a number of situations where constant time access to data can be
achieved by indexing directly into a block. . .

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 2

eg. Array uses an addressing function

α(i, j) = (i− 1)× n + j 1 ≤ i ≤ m, 1 ≤ j ≤ n

a b c d e
a 1 2 3 4 5
b 6 7 8 9 10
c 11 12 13 14 15
d 16 17 18 19 20

eg. Set uses a characteristic function. . .

f(e) =










true (or 1) e ∈ A
false (or 0) otherwise

0 0 11011 0
1 2 3 i-1 i i+1 m-1 m

e e e e e e ee1 2 3 i mi-1 i+1 m-1

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 3

These approaches:

• often sacrifice space for time — space wasted by all the “holes”

• rely on the ordering of elements, which translates to an ordering of the memory
block.

Can we improve on these?

• more compact use of space

• applicable to unordered information (eg Table)

⇒ hashing. . .

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 4



2. Basic Hashing

The direct indexing approaches above work by:

• setting aside a big enough block for all possible data items

• spacing these so that the address of any item can be found by a simple calculation
from its ordinality

What if we use a block which is not big enough for all possible items?

• Addressing function must map all items into this space.

• Some items may get mapped to the same position ⇒ called a collision.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 5

Example

Suppose we fill out our Lotto coupons as follows. Each time we notice a positive
integer in our travels, we calculate its remainder modulo 45 and add that to our
coupon. . .

The first thing we see is a pizza brochure containing the numbers 165, 93898500,
2, 13, 1690. These map to positions 30, 15, 2, 13, 25.

This fills 5 positions in our data store. . .

0 1 2X 3 4 5 6 7 8
9 10 11 12 13X 14 15X 16 17
18 19 20 21 22 23 24 25X 26
27 28 29 30X 31 32 33 34 35
36 37 38 39 40 41 42 43 44

Next we ring up to order our Greek Vegetarian, and we’re told it’ll be ready in 15!
⇒ collision

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 6

Collisions

When two entries “hash” to the same key, we have a collision.

We need a method for dealing with this. However. . .

Advantages:

• Once we allow collisions we have much more freedom in choosing an addressing
function.

• It no longer matters whether we know an ordering over the items.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 7

Exercise

Obtain an address from your name into the block 1. . . 10 as follows:

• Count up the number of letters in your name.

• Add 1.

• Double it.

• Add 1.

• Double it.

• Subtract the number of letters in your name.

• Add the digits in your current number together.

• Square it.

• Add the digits in your number together.

What address did you get?

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 8



Such a function is called a hash function. It takes the item to be looked up or
stored and “hashes it” into an address in the block, or hash table.

Hashing is used in both data management (via hash tables) and security and cryp-
tography (for example MD5 checksums).

We will consider hash functions in more detail, and then consider methods for
dealing with collisions.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 9

3. Hash Functions

To begin with, we’ll assume that the element (or key) to be hashed is an integer.
We need a function

h : N → 0 . . . m− 1

that maps it into a hash table block of size m.

Thus, to store a table t, we would set

block[h(a)] = a

for all elements a in t, and fill the other elements of block with null references.

We call h(a) the home address of a.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 10

3.1 Properties of Hash Functions

A hash function that maps each item to a unique position is called perfect. Note
that if we had an infinitely large storage block we could always design a perfect
hash function.

Since our hash functions will generally not be perfect, we want a function that
distributes evenly over the hash table — that is, one that is not biased .

Q: What is an example of a “worst case” hash function in terms of bias?

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 11

3.2 2-universal Functions

In the Lotto example earlier, we used the hash function

h(i) = i mod 45.

A commonly used class of hash functions, called 2-universal functions, extends this
idea. . .

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 12



A 2-universal hash function has the form

h(i) = ((c1i + c2)mod p)mod m

where m is the size of the hash table, p > m is a large prime (p > 220), c1 < p is
a positive integer, and c2 < p is a non-negative integer.

— (c1i + c2) mod p: “scrambles” i

— mod m: maps into the block

Small changes (eg to c1) lead to completely different hash functions.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 13

Another 2-universal hash function that can be used in languages with bit-string
operations. . .

Assume items are b-bit strings for some b > 0, and m = 2l for some l > 0. The
multiplicative hash function has the form:

h(i) = (a i mod 2b) div 2b−1

for odd a such that 0 < a ≤ 2b − 1.

Advantage — mod and div operations can be evaluated by shifting rather than
integer division ⇒ very quick

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 14

3.3 Hashing Non-integers

Non-integers are generally mapped (hashed!) to integers before applying the hash
functions mentioned earlier.

Example

Assume we have a program with 3 variables

float abc, abd, bad;

and we wish to hash to a location to store their values. We could obtain an integer
from:

• the length of each word (as in the earlier example) — will lead to a lot of collisions
⇒ in this case all variables will hash to the same location

• the ordinality of the first character of each word — fewer collisions, but still poor
⇒ the first two will hash to the same location

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 15

• summing the ordinality of all characters — likely to be even fewer collisions
⇒ but here, the last two will collide

• “weight” the characters differently, eg 3 times the first plus two times the second
plus one times the third — collisions will be much rarer (but may still occur)
⇒ no collisions in this set

Extending the weighting idea, a typical hash function for strings is to treat the
characters as digits of an integer to some base b.

Assume we have a character string s1s2 . . . sk. Then, we calculate

[ord(s1).b
k−1 + ord(s2).b

k−2 + . . . + ord(sk)b
0] mod 2B

Here:

• b is a small odd number, such as 37. . .

• mod 2B gives the least significant B bits of the result — eg 16 or 32.

Q: Why the least significant bits?
c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 16



4. Collision Resolution Techniques

There are many variations on collision resolution techniques. We consider examples
of three common types.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 17

4.1 Bucketing and Separate Chaining

The simplest solution to the collision problem is to allow more than one item to be
stored at each position in the hash table

⇒ associate a List with each hash table cell. . .

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 18

Bucketing

— each list is represented by a (fixed size) block.

1

m-1

o

i

q f

r

t u p w

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 19

“Advantage”

• Simple to implement — hash to address then search list.

Disadvantages

• Searching the List slows down Table access.

• Fixed size ⇒ may waste a lot of space (both in hash table and buckets).

• Buckets may overflow! ⇒ back where we started (a collision is just an overflow
with a bucket size of 1).

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 20



Separate Chaining (Variable Size Bucketing)

— each List is represented by linked list or chain.

r

q

t

f

u p

1

m-1

o

i w

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 21

Advantages

• Simple to implement.

• No overflow.

Disadvantages

• Searching the List slows down Table access.

• Extra space for pointers (if we are storing records of information the space used
by pointers will generally be small compared to the total space used).

• Performance deteriorates as chain lengths increase.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 22

Performance

Worst case for separate chaining ⇒ all items stored in a single chain. Worst case
performance same as List: O(n) — nothing gained!

But expected case performance is much better. . .

The load factor λ of a hash table is the number of items in the table divided by the
size m of the table.

Assume that each entry in a hash table is equally likely to be accessed, and
that each sequence of n insertions is equally likely to occur. Then a hash table
that uses separate chaining and has load factor λ has the following expected
case performance:

• s(λ) = 2 + λ/2 probes (read accesses) for successful search

• u(λ) = 2 + λ probes for unsuccessful search

See Wood, Section 9.2.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 23

4.2 Open Addressing

Separate chaining (and bucketing) require additional space. Yet there will normally
be space in the table that is wasted.

Alternative ⇒ open addressing methods

• store all items in the hash table

• deal with collisions by incrementing hash table index, with wrap-around

Linear probing — increment hash index by one (with wrap-around) until the item,
or null , is found.

Problem — items tend to “cluster”.

Double hashing — increment hash index using an “increment hash function”! ⇒
may jump to anywhere in table.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 24



Advantages

• All space in the hash table can be used.

Disadvantages

• Insertions limited by size of table.

• Deletions are problematic. . .

Deleting items means others may not be able to be reached — requires reorganizing
table, or marking (flagging) items as deleted.

The latter is most common, but means erosion of space in the hash table.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 25

4.3 Dynamic Tables — Linear Hashing

Finally, there are methods that consider the hash table to be dynamic rather than
static!

Linear hashing is an extension of separate chaining — rather than allowing the
variable-length buckets (chains) to grow indefinitely, we limit the average size of
the buckets.

• Insertions: if the average chain size exceeds a predefined upper bound, split the
“next” unsplit bucket, and hash the items in the bucket by a function with double
the previous base (ie m, 2m, 4m,. . . ).

• Deletions: if the average bucket size drops below a predefined minimum and the
table is no smaller than the original table, shrink the table.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 26

Effectively, we use two hash functions parameterised by split (the split point) and
M (roughly the table size). Assume h is the hash function that maps keys to large
integers.

Then, the hashed address is:

H(k) =











h(k) mod 2M, if h(k) mod M < split
h(k) mod M, otherwise











If the loading factor becomes too high (eg more than 0.8M elements in the table),
then:

1. split = split + 1

2. rehash all items in bucket split− 1

3. if split = M , set split = 0 and M = 2M .

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 27

Example

Assume table is initially of size 3, and maximum loading is 2. . .

a
b

c
e

d
f

b
f

c
e

d
g b

f

d
g

aa

h
i

c
e

0 1 2 0 1 2 3 0 1 2 3 4

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 28



Disadvantages

• (More complicated to code.)

• Requires movement of items.

Advantages

•Maximum load is maintained — improves expected efficiency.

• Insertions — no overflow, not bounded by size of table.

• Deletions — no erosion.

This approach is used by java.util.Hashtable — have a look at its API docu-
mentation.

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 29

5. Summary

Hash tables can be used to:

• improve the space requirements of some ADTs for which bounded representations
are suitable

• improve the time efficiency of some ADTs, such as Table, which require un-
bounded representations

We have seen a number of methods for collision resolution in hash tables:

• bucketing and separate chaining

• open addressing, including linear probing and double hashing

• dynamic methods, such as linear hashing

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 30

6. Caution!

Note that while performance can be very good, this is not a panacea! For many
applications, such as those naturally represented by trees, hashing would lose the
structure.

ie. don’t “hash first, ask questions later”

(Hash can be addictive!)

c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 31 c© Cara MacNish & Tim French CITS2200 Hash Tables Slide 32



CITS2200 Data Structures and Algorithms

Topic 16

Revision

Dr. Luigi Barone
Room 2.12

luigi@csse.uwa.edu.au

Dr. Rowan Davies
Room 2.16

rowan@csse.uwa.edu.au

A unit about space, time, and integrity .

c© Cara MacNish & Tim French CITS2200 Revision Slide 1

Handbook Description

At the core of most computer applications is the storage and retrieval of information.
The way that the stored data is structured has a strong impact on what can be
retrieved , how quickly it can be retrieved , and how much space it occupies. The
use of generic structures, or abstract data types (ADTs), to encapsulate the data
also allows software engineering principles of independent modification, extension
and reuse.

This unit studies the specification, implementations and time and space performance
of a range of commonly-used ADTs and corresponding algorithms in an object-
oriented setting. The aim is to provide students with the background needed both
to implement their own ADTs where necessary, and to select and use appropriate
ADTs from object-oriented libraries where suitable.

c© Cara MacNish & Tim French CITS2200 Revision Slide 2

1. What We Studied

This unit presented a dearth of information about commonly used data structures
and a framework for analysing and comparing them.

1.1 Preliminaries

•What is a data structure?

•What is an abstract data type?

•What is the difference between an abstract data type and a data structure?

•Why study ADTs and data structures.

c© Cara MacNish & Tim French CITS2200 Revision Slide 3

1.2 Recursion

• Recursive algorithms (mathematical functions).

• Recursive data structures (linked lists, linked trees).

• Implementing recursion in Java.

• Recursion in binary searches and tree traversals.

c© Cara MacNish & Tim French CITS2200 Revision Slide 4



1.3 Data Abstraction And Specification Of ADTs

• Be aware of the difference between an ADT (a specification) and a data structure
(an implementation of an ADT).

• A programmer should identify the required specification, and then search for the
most appropriate implementation.

• How does Java support the separation of specifications and implementations?

c© Cara MacNish & Tim French CITS2200 Revision Slide 5

1.4 Complexity Analysis

•What makes a good implementation, and how do we compare different imple-
mentations?

• Complexity analysis is used to measure time and space performance of data
structures via mathematical functions parameterised by the size of input.

• Expected case analysis makes assumptions about the type of input and calculates
the average time/space taken.

•Worst case analysis makes the most pessimistic assumptions to obtain a guar-
anteed lower bound of performance.

• Asymptotic analysis abstracts away all minor terms from the functions and fo-
cuses on the rates of growth.

• Amortized analysis is used in data structures to amortize the cost of expensive
operations over the cheaper operations that must accompany them.

c© Cara MacNish & Tim French CITS2200 Revision Slide 6

1.5 Programming

• As an outcome of this unit, you are expected to be a very competent programmer.

• You should be aware of how Java supports ADTs through encapsulation, ab-
straction, interfaces, and generics.

• You should be aware of common methods to protect the integrity of data struc-
tures using access modifiers, inner classes, and iterators.

If you have successfully completed the requirements of this unit, you should consider
yourself a competent programmer. You may now wish to consider:

• Participating in the ACM-ICPC programming competition.

• Looking for work experience to fulfill Professional Practicum requirements.

c© Cara MacNish & Tim French CITS2200 Revision Slide 7

2. The ADTs And Data Structures

You should be aware of the implementations, complexity, and applications for:

ADT Implementation
Stack Block, Linked
Queue Block, Linked, Cyclic
Deque Block, Cyclic
List Singly linked, Doubly linked, Cyclic, Block, Simplist
Maps Linked, Block
Binary Trees Singly linked, Block, Doubly linked, SBinTree
Trees Singly linked, Doubly Linked
Priority Queue Linked, Heap
Sets Block with characteristic function, Linked (ordered and unordered)
Table Block, Linked
Dictionary List, Binary search tree, B-Tree, AVL tree, Red-black tree
Hash Table Bucketing, Separate chaining, Open addressing, Linear hashing

c© Cara MacNish & Tim French CITS2200 Revision Slide 8



3. The Exam

The structure of the exam:

• 2 hours 10 minutes.

• 15 multiple choice, each worth 2 marks → 30 marks.

• 3 short answer questions, each worth 20 marks → 60 marks.

• 90 marks total → 1.5 minutes per mark.

More information is available from the CITS2200 web-site.

All the material covered in the lectures (with the exception of any material marked
as not examinable), tutorials, labsheets, and the project is examinable, whether it
was for assessment or not.

Email us if you would like to arrange a consultation before the exam.

Good luck!
c© Cara MacNish & Tim French CITS2200 Revision Slide 9


