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Overview

1. Introduction

(a) What are Algorithms?

(b) Design of Algorithms.

(c) Types of Algorithms.

2. Complexity

(a) Growth rates.

(b) Asymptotic analysis, O and Θ.

(c) Average case analysis.

(d) Recurrence relations.

3. Sorting

(a) Insertion Sort.

(b) Merge Sort.

(c) QuickSort.
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What you should already know?

This unit will require the following basic

knowledge:

1. Java Programming: classes, control

structures, recursion, testing, etc

2. Data Structures: stacks, queues, lists,

trees, etc.

3. Complexity: definition of “big O”, Θ

notation, amortized analysis etc.

4. Some maths: proof methods, such as proof

by induction, some understanding of

continuous functions
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What will we be studying?

We will study a collection of algorithms,
examining their design, analysis and sometimes
even implementation. The topics we will cover
will be taken from the following list:

1. Specifying and implementing algorithms.

2. Basic complexity analysis.

3. Sorting Algorithms.

4. Graph algorithms.

5. Network flow algorithms.

6. Computational Geometry.

7. String algorithms.

8. Greedy/Dynamic algorithms.

9. Optimization Algorithms.
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What are the outcomes of this unit?

At the end of the unit you will:

1. be able to identify and abstract
computational problems.

2. know important algorithmic techniques and
a range of useful algorithms.

3. be able to implement algorithms as a
solution to any solvable problem.

4. be able to analyse the complexity and
correctness of algorithms.

5. be able to design correct and efficient
algorithms.

The course will proceed by covering a number
of algorithms; as they are covered, the general
algorithmic technique involved will be
highlighted, and the role of appropriate data
structures, and efficient implementation
considered.
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What are algorithms?

An algorithm is a well-defined finite set of rules

that specifies a sequential series of elementary

operations to be applied to some data called

the input, producing after a finite amount of

time some data called the output.

An algorithm solves some computational

problem.

Algorithms (along with data structures) are the

fundamental “building blocks” from which

programs are constructed. Only by fully

understanding them is it possible to write very

effective programs.
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Design and Analysis

An algorithmic solution to a computational

problem will usually involve designing an

algorithm, and then analysing its performance.

Design A good algorithm designer must have a

thorough background knowledge of algorithmic

techniques, but especially substantial creativity

and imagination. Often the most obvious way

of doing something is inefficient, and a better

solution will require thinking “out of the box”.

In this respect, algorithm design is as much an

art as a science.

Analysis A good algorithm analyst must be

able to carefully estimate or calculate the

resources (time, space or other) that the

algorithm will use when running. This requires

logic, care and often some mathematical ability.

The aim of this course is to give you sufficient

background to understand and appreciate the

issues involved in the design and analysis of

algorithms.
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Design and Analysis

In designing and analysing an algorithm we

should consider the following questions:

1. What is the problem we have to solve?

2. Does a solution exist?

3. Can we find a solution (algorithm), and is

there more than one solution?

4. Is the algorithm correct?

5. How efficient is the algorithm?
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The importance of design

By far the most important thing in a program

is the design of the algorithm. It is far more

significant than the language the program is

written in, or the clock speed of the computer.

To demonstrate this, we consider the problem

of computing the Fibonacci numbers.

The Fibonacci sequence is the sequence of

integers starting

1,1,2,3,5,8,13,21,34,55, . . .

which is formally defined by

F1 = F2 = 1 and Fn = Fn−1 + Fn−2.

Let us devise an algorithm to compute Fn.
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The naive solution

The naive solution is to simply write a recursive

method that directly models the problem.

static int fib(int n) {

return (n<3 ? 1 : fib(n-1) + fib(n-2));

}

Is this a good algorithm/program in terms of

resource usage?

Timing it on a (2005) iMac gives the following

results (the time is in seconds and is for a loop

calculating Fn 10000 times).

Value Time
F20 1.65
F21 2.51
F22 3.94
F23 6.29

Value Time
F24 9.946
F25 15.95
F26 25.68
F27 41.40

How long will it take to compute F30, F40 or

F50?
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Experimental results

Make a plot of the times taken.

22 24 26

10.0

20.0

30.0

40.0
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Theoretical results

Each method call to fib() does roughly the

same amount of work (just two comparisons

and one addition), so we will have a very rough

estimate of the time taken if we count how

many method calls are made.

Exercise: Show the number of method calls

made to fib() is 2Fn − 1.
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Re-design the algorithm

We can easily re-design the algorithm as an

iterative algorithm.

static int fib(int n) {

int f_2; /* F(i+2) */

int f_1 = 1; /* F(i+1) */

int f_0 = 1; /* F(i) */

for (int i = 1; i < n; i++) {

/* F(i+2) = F(i+1) + F(i) */

f_2 = f_1 + f_0;

/* F(i) = F(i+1); F(i+1) = F(i+2) */

f_0 = f_1;

f_1 = f_2;

}

return f_0;

}
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An Iterative Algorithm

An iterative algorithm gives the following

times:

Value Time
F20 0.23
F21 0.23
F22 0.23
F23 0.23

Value Time
F103 0.25
F104 0.48
F105 2.20
F106 20.26
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Another solution?

The Fibonacci sequence is specified by the

homogeneous recurrence relation:

F(n) =
{

1 if n = 1, 2;

F(n − 1) + F(n − 2) otherwise.

In general we can define a closed form for
these recurrence equations:

F(n) = Aαn + Bβn

where α, β are the roots of

x2 − x − 1 = 0.

• You need to be able to derive a recurrence
relation that describes an algorithms
complexity.

• You need to be able to recognize that

linear recurrence relations specify
exponential functions.

See CLRS, Chapter 4.
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Recurrence Relations

Recurrence relations can be a useful way to

specify the complexity of recursive functions.

For example the linear homogeneous

recurrence relation:

F(n) =
{

1 if n = 1, 2;

F(n − 1) + F(n − 2) otherwise

specifies the sequence 1,1,2,3,5,8,13, .....

In general a linear homogeneous recurrence

relation is given as:

F(1) = c1
F(2) = c2

...
F(k) = ck
F(n) = a1F(n − 1) + ... + akF(n − k)

For example

F(n) =
{

1 if n = 1, 2;

2F(n − 1) + F(n − 2) otherwise

specifies the sequence 1,1,3,7,17,41, ...
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Solving the recurrence

All linear homogeneous recurrence relations

specify exponential functions. We can find a

closed form for the recurrence relation as

follows:

Suppose that F(n) = rn.

Then rn = a1rn−1 + ... + akr(n − k). We divide

both sides of the equation by rn−k.

Then rk = a1rk−1 + ... + ak.

To find r we can solve the polynomial

equation: rk − a1rk−1 − .... − aK = 0.

There are k solutions, r1, ..., rk to this equation,

and each satisfies the recurrence:

F(n) = a1F(n−1)+a2F(n−1)+ ...+akF(n−k).

We also have to satisfy the rest of the

recurrence relation, F(1) = c1 etc. To do this

we can use a linear combination of the

solutions, rn
k . That is, we must find α1, ..., αk

such that

F(n) = α1rn
1 + ... + αkrn

k

This can be done by solving linear equations.
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Solving the recurrence

The roots of the polynomial are

−b ±
√

b2 − 4ac

2a
=

1 ±
√

5

2

and so the solution is

U(n) = A

(

1 +
√

5

2

)n

+ B

(

1 −
√

5

2

)n

If we substitute n = 1 and n = 2 into the

equation we get

A =
1√
5

B =
−1√

5

Thus

F(n) =
1√
5

(

1 +
√

5

2

)n

−
1√
5

(

1 −
√

5

2

)n

18

What is an algorithm?

We need to be more precise now what we

mean by a problem, a solution and how we

shall judge whether or not an algorithm is a

good solution to the problem.

A computational problem consists of a general

description of a question to be answered,

usually involving some free variables or

parameters.

An instance of a computational problem is a

specific question obtained by assigning values

to the parameters of the problem.

An algorithm solves a computational problem if

when presented with any instance of the

problem as input, it produces the answer to the

question as its output.
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A computational problem: Sorting

Instance: A sequence L of comparable objects.

Question: What is the sequence obtained when

the elements of L are placed in ascending

order?

An instance of Sorting is simply a specific list

of comparable items, such as

L = [25,15,11,30,101,16,21,2]

or

L = [“dog”,“cat”,“aardvark”,“possum”].
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A computational problem: Travelling Salesman

Instance: A set of “cities” X together with a

“distance” d(x, y) between any pair x, y ∈ X.

Question: What is the shortest circular route

that starts and ends at a given city and visits

all the cities?

An instance of Travelling Salesman is a list of

cities, together with the distances between the

cities, such as

X = {A, B, C, D, E, F}

d =

A B C D E F
A 0 2 4 ∞ 1 3
B 2 0 6 2 1 4
C 4 6 0 1 2 1
D ∞ 2 1 0 6 1
E 1 1 2 6 0 3
F 3 4 1 1 3 0
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An algorithm for Sorting

One simple algorithm for Sorting is called

Insertion Sort. The basic principle is that it

takes a series of steps such that after the i-th

step, the first i objects in the array are sorted.

Then the (i + 1)-th step inserts the (i + 1)-th

element into the correct position, so that now

the first i + 1 elements are sorted.

procedure INSERTION-SORT(A)

for j ← 2 to length[A]

do key ← A[j]

! Insert A[j] into the sorted sequence

! A[1 . . . j − 1]

i = j − 1

while i > 0 and A[i] > key

do A[i + 1] ← A[i]

i = i − 1

A[i + 1] ← key
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Pseudo-code

Pseudo-code provides a way of expressing

algorithms in a way that is independent of any

programming language. It abstracts away other

program details such as the type system and

declaring variables and arrays. Some points to

note are:

• The statement blocks are determined by

indentation, rather than { and } delimiters

as in Java.

• Control statements, such as if...

then...else and while have similar

interpretations to Java.

• The character ! is used to indicate a

comment line.
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Pseudo-code (contd)

• A statement v ← e implies that expression e

should be evaluated and the resulting value

assigned to variable v. Or, in the case of

v1 ← v2 ← e, to variables v1 and v2.

• All variables should be treated as local to

their procedures.

• Arrays indexation is denoted by A[i] and

arrays are assumed to be indexed from 1 to

N (rather than 0 to N − 1, the approach

followed by Java).

See CLRS (page 19-20) for more details.

But to return to the insertion sort: What do

we actually mean by a good algorithm?
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Evaluating Algorithms

There are many considerations involved in this

question.

• Correctness

1. Theoretical correctness

2. Numerical stability

• Efficiency

1. Complexity

2. Speed

25

Correctness of insertion sort

Insertion sort can be shown to be correct by a
proof by induction.

procedure INSERTION-SORT(A)
for j ← 2 to length[A]

do key ← A[j]
! Insert A[j] into the sorted sequence
! A[1 . . . j − 1]
i = j − 1
while i > 0 and A[i] > key

do A[i + 1] ← A[i]
i = i − 1

A[i + 1] ← key

We do the induction over the loop variable j.

The base case of the induction is:

“the first element is sorted”,

and the inductive step is:

“given the first j elements are sorted after the

jth iteration, the first j + 1 elements will be

sorted after the j + 1th iteration.
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Proof by Induction

To show insertion sort is correct, let p(n) be

the statement “after the nth iteration, the first

n + 1 elements of the array are sorted”

To show p(0) we simply note that a single

element is always sorted.

Given p(i) is true for all i < n, we must show

that p(n) is true:

After the (n − 1)th iteration the first n

elements of the array are sorted.

The nth iteration takes the (n + 1)th element

and inserts it after the last element that a)

comes before it, and b) is less than it.

Therefore after the nth iteration, the first n + 1

elements of the array are sorted.

27

Aside: Proof by Contradiction

Another proof technique you may need is proof

by contradiction.

Here, if you want to show some property p is

true, you assume p is not true, and show this

assumption leads to a contradiction

(something we know is not true, like i < i).

For example, two sorted arrays of integers, L,

containing exactly the same elements, must be

identical.

Proof by contradiction: Suppose M &= N are

two distinct, sorted arrays containing the same

elements. Let i be the least number such that

M [i] &= N [i]. Suppose a = M [i] < N [i]. Since M

and N contain the same elements, and

M [j] = N [j] for all j < i, we must have

a = N [k] for some k > i. But then N [k] < N [i]

so N is not sorted: contradiction.

28



Complexity of insertion sort

For simple programs, we can directly calculate
the number of basic operations that will be
performed:

procedure INSERTION-SORT(A)
1 for j ← 2 to length[A]
2 do key ← A[j]

! Insert A[j] into the sorted sequence A[1 . . . j − 1]
3 i = j − 1
4 while i > 0 and A[i] > key
5 do A[i + 1] ← A[i]
6 i = i − 1
7 A[i + 1] ← key

The block containing lines 2-7 will be executed

length[A] − 1 times, and contains 3 basic

operations

In the worst case the block containing lines 5-7

will be executed j − 1 times, and contains 2

basic operations.

In the worst case the algorithm will take

(N − 1).3 + 2(2 + 3 + ... + N) = N2 + 4N − 5

where length[A] = N .
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Correctness

An algorithm is correct if, when it terminates,

the output is a correct answer to the given

question.

Incorrect algorithms or implementations

abound, and there are many costly and

embarrassing examples:

• Intel’s Pentium division bug—a

scientist discovered that the original

Pentium chip gave incorrect results on

certain divisions. Intel only reluctantly

replaced the chips.

• USS Yorktown—after switching their

systems to Windows NT, a “division by

zero” error crashed every computer on

the ship, causing a multi-million dollar

warship to drift helplessly for several

hours.

• Others...?
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Theoretical correctness

It is usually possible to give a mathematical

proof that an algorithm in the abstract is

correct, but proving that an implementation

(that is, actual code) is correct is much more

difficult.

This is the province of an area known as

software verification, which attempts to

provide logical tools that allow specification of

programs and reasoning about programs to be

done in a rigorous fashion.

The alternative to formal software verification

is testing; although thorough testing is vital for

any program, one can never be certain that

everything possible has been covered.

Even with vigorous testing, there is always the

possibility of hardware error—mission critical

software must take this into account.
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Types of Algorithm

For all solvable problems, you should (already!)

be able to produce a correct algorithm. The

brute force approach simply requires you to

1. enumerate all possible solutions to the

problem, and

2. iterate through them until you find one

that works.

This is rarely practical. Other strategies to

consider are:

• Divide and conquer - Divide the

problem into smaller problems to solve.

• Dynamic programming.

• Greedy algorithms.

• Tree traversals/State space search
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Numerical Stability

You can be fairly certain of exact results from

a computer program provided all arithmetic is

done with the integers

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .} and you guard

carefully about any overflow.

However the situation is entirely different when

the problem involves real number, because

there is necessarily some round-off error when

real numbers are stored in a computer. A

floating point representation of a number in

base β with precision p is a representation of

the form.

d.ddddd × βe

where d.ddddd has exactly p digits.
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Accumulation of errors

Performing repeated calculations will take the

small truncation errors and cause them to

accumulate. The resulting error is known as

roundoff error. If we are careful or lucky, the

roundoff error will tend to behave randomly,

both positive and negative, and the growth of

error will be slow.

Certain calculations however, vastly increase

roundoff error and can cause errors to grow

catastrophically to the point where they

completely swamp the real result.

Two particular operations that can cause

numerical instability are

• Subtraction of nearly equal quantities

• Division by numbers that are nearly

zero

It is important to be aware of the possibility for

roundoff error and to alter your algorithm

appropriately.
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Efficiency

An algorithm is efficient if it uses as few

resources as possible. Typically the resources

which we are interested in are

• Time, and

• Space (memory)

Other resources are important in practical

terms, but are outside the scope of the design

and analysis of algorithms.

In many situations there is a trade-off between

time and space, in that an algorithm can be

made faster if it uses more space or smaller if

it takes longer.

Although a thorough analysis of an algorithm

should consider both time and space, time is

considered more important, and this course will

focus on time complexity.
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Measuring time

How should we measure the time taken by an

algorithm?

We can do it experimentally by measuring the

number of seconds it takes for a program to

run — this is often called benchmarking and is

often seen in popular magazines. This can be

useful, but depends on many factors:

• The machine on which it is running.

• The language in which it is written.

• The skill of the programmer.

• The instance on which the program is

being run, both in terms of size and

which particular instance it is.

So it is not an independent measure of the

algorithm, but rather a measure of the

implementation, the machine and the instance.
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Complexity

The complexity of an algorithm is a

“device-independent” measure of how much

time it consumes. Rather than expressing the

time consumed in seconds, we attempt to

count how many “elementary operations” the

algorithm performs when presented with

instances of different sizes.

The result is expressed as a function, giving

the number of operations in terms of the size

of the instance. This measure is not as precise

as a benchmark, but much more useful for

answering the kind of questions that commonly

arise:

• I want to solve a problem twice as

big. How long will that take me?

• We can afford to buy a machine twice

as fast? What size of problem can we

solve in the same time?

The answers to questions like this depend on

the complexity of the algorithm.
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Example

Suppose you run a small business and have a

program to keep track of your 1024 customers.

The list of customers is changing frequently

and you often need to sort it. Your two

programmers Alice and Bob both come up

with algorithms.

Alice presents an algorithm that will sort n

names using 256n lgn comparisons and Bob

presents an algorithm that uses n2

comparisons. (Note: lgn ≡ log2 n)

Your current computer system takes 10−3

seconds to make one comparison, and so when

your boss benchmarks the algorithms he

concludes that clearly Bob’s algorithm is

better.

Size Alice Bob
1024 2621 1049

But is he right?
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Expansion

Alice however points out that the business is

expanding and that using Bob’s algorithm

could be a mistake. As the business expands,

her algorithm becomes more competitive, and

soon overtakes Bob’s.

Size Alice Bob
1024 2621 1049
2048 5767 4194
4096 12583 16777
8192 27263 67109

So Alice’s algorithm is much better placed for

expansion.

A benchmark only tells you about the situation

today, whereas a software developer should be

thinking about the situation both today and

tomorrow!
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Hardware improvement

A time-critical application requires you to sort
as many items as possible in an hour. How
many can you sort?

An hour has 3600 seconds, so we can make
3600000 comparisons. Thus if Alice’s
algorithm can sort nA items, and Bob’s nB
items, then

3600000 = 256nA lgnA = n2
B,

which has the solution

nA = 1352 nB = 1897.

But suppose that we replace the machines with
ones that are four times as fast. Now each
comparison takes 1

4 × 10−3 seconds so we can
make 14400000 comparisons in the same time.
Solving

14400000 = 256nA lgnA = n2
B,

yields

nA = 4620 nB = 3794.

Notice that Alice’s algorithm gains much more
from the faster machines than Bob’s.
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Different instances of the same size

So far we have assumed that the algorithm

takes the same amount of time on every

instance of the same size. But this is almost

never true, and so we must decide whether to

do best case, worst case or average case

analysis.

In best case analysis we consider the time

taken by the algorithm to be the time it takes

on the best input of size n.

In worst case analysis we consider the time

taken by the algorithm to be the time it takes

on the worst input of size n.

In average case analysis we consider the time

taken by the algorithm to be the average of

the times taken on inputs of size n.

Best case analysis has only a limited role, so

normally the choice is between a worst case

analysis or attempting to do an average case

analysis.
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Worst case analysis

Most often, algorithms are analysed by their

worst case running times — the reasons for

this are:

• This is the only “safe” analysis that

provides a guaranteed upper bound on the

time taken by the algorithm.

• Average case analysis requires making some

assumptions about the probability

distribution of the inputs.

• Average case analysis is much harder to do.

42

Big-O notation

Our analysis of insertion sort showed that it

took about n2 + 4n − 5 operations, but this is

more precise than necessary. As previously

discussed, the most important thing about the

time taken by an algorithm is its rate of

growth. The fact that it is n2/2 rather than

2n2 or n2/10 is considered irrelevant. This

motivates the traditional definition of Big-O

notation.

Definition A function f(n) is said to be

O(g(n)) if there are constants c and N such

that

f(n) ≤ cg(n) ∀n ≥ N.

Thus by taking g(n) = n2, c = 1 and N = 1 we

conclude that the running time of Insertion

Sort is O(n2), and moreover this is the best

bound that we can find. (In other words

Insertion Sort is not O(n) or O(n lgn).)
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Big-Theta notation

Big-O notation defines an asymptotic upper

bound for a function f(n). But sometimes we

can define a lower bound as well, allowing a

tighter constraint to be defined. In this case

we use an alternative notation.

Definition A function f(n) is said to be

Θ(g(n)) if there are constants c1, c2 and N

such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ N.

If we say that f(n) = Θ(n2) then we are

implying that f(n) is approximately

proportional to n2 for large values of n.

See CLRS (section 3) for a more detailed

description of the O and Θ notation.
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Why is big-O notation useful?

In one sense, big-O notation hides or loses a

lot of useful information. For example, the

functions

f(n) = n2 / 1000

g(n) = 100 n2

h(n) = 1010 n2

are all O(n2) despite being quite different.

However in another sense, the notation

contains the essential information, in that it

completely describes the asymptotic rate of

growth of the function. In particular it contains

enough information to give answers to the

questions:

• Which algorithm will ultimately be

faster as the input size increases?

• If I buy a machine 10 times as fast,

what size problems can I solve in the

same time?
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An asymptotically better sorting algorithm

procedure MERGE-SORT(A, p, r)

if p < r

then q ← ,(p + r)/2-
MERGE-SORT(A, p, q)

MERGE-SORT(A, q + 1, r)

MERGE(A, p, q, r)

procedure MERGE(A, p, q, r)

n1 ← q − p + 1; n2 ← r − q

allocate arrays L[1 . . . n1 + 1] and R[1 . . . n2 + 1]

for i ← 1 to n1

do L[i] ← A[p + i − 1]

for j ← 1 to n2

do R[j] ← A[q + j]

L[n1 + 1] ← ∞; R[n2 + 1] ← ∞
i ← 1; j ← 1

for k ← p to r

do if L[i] ≤ R[j]

then A[k] ← L[i]

i ← i + 1

else A[k] ← R[j]

j ← j + 1
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Merge-sort complexity

The complexity of Merge Sort can be shown to

be Θ(nlgn).

47

The Master Theorem

Merge Sort’s complexity can be described by

the recurrence relation:

F(n) = 2F(n/2) + n, where F(1) = 1.

As this variety of recurrence relation appears

frequently in divide and conquer algorithms it

is useful to have an method to find the

asymptotic complexity of these functions.

The Master Theorem: Let f(n) be a

function described by the recurrence::

f(n) = af(n/b) + cnd.

where a, b ≥ 1, d ≥ 0 and c > 0 are constants.

Then

f(n) is











O(nd) if a < bd

O(ndlgn) if a = bd

O(nlogba) if a > bd











See CLRS, 4.3.
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Average case analysis

The major problem with average case analysis

is that we must make an assumption about the

probability distribution of the inputs. For a

problem like Sorting there is at least a

theoretically reasonable choice—assume that

every permutation of length n has an equal

chance of occurring (already we are assuming

that the list has no duplicates).

For example, we can consider each of the 24
permutations when sorting four inputs with
insertion sort:

Comparisons Inputs
3 1234, 2134
4 1243, 1324, 2143, 2314, 3124, 3214
5 1342, 1423, 2341, 2413, 3142, 3241,

4123, 4213
6 1432, 2431, 3412, 3421, 4132, 4231,

4312, 4321

So the weighted average of comparisons is

(3 × 2) + (4 × 6) + (5 × 8) + (6 × 8)

24
= 4.916

(recall that the best case for four inputs is 3,

whereas the worst case is 6).
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Inversions

Definition An inversion in a permutation σ is

an ordered pair (i, j) such that

i < j and σi > σj.

For example, the permutation σ = 1342 has

two inversions, while σ = 2431 has four.

It is straightforward to see that the number of

comparisons that a permutation requires to be

sorted is equal to the number of inversions in it

(check this!) plus a constant, c.

(For sorting four inputs, c = 3)

So the average number of comparisons

required is equal to the average number of

inversions in all the permutations of length n.

Theorem The average number of inversions

among all the permutations of length n is

n(n − 1)/4.

Thus Insertion Sort takes O(n2) time on

average.
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An asymptotically worse algorithm

Quicksort is Θ(n2), but it’s average complexity

is better than Merge-sort! (CLRS Chapter 7)

procedure QUICKSORT(A, p, r)

if p < r

then q ← PARTITION(A, p, r)

QUICKSORT(A, p, q − 1)

QUICKSORT(A, q + 1, r)

procedure PARTITION(A, p, r)

x ← A[r]

i ← p − 1

for j ← p to r − 1

do if A[j] ≤ x

then i ← i + 1

exchange A[i] ↔ A[j]

exchange A[i + 1] ↔ A[r]

return i + 1
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Input size

The complexity of an algorithm is a measure of

how long it takes as a function of the size of

the input. For Sorting we took the number of

items n, as a measure of the size of the input.

This is only true provided that the actual size

of the items does not grow as their number

increases. As long as they are all some

constant size K, then the input size is Kn. The

actual value of the constant does not matter,

as we are only expressing the complexity in

big-O notation, which suppresses all constants.

But what is an appropriate input parameter for

Travelling Salesman? If the instance has n

cities, then the input itself has size Kn2—this

is because we need to specify the distance

between each pair of cities.

Therefore you must be careful about what

parameter most accurately reflects the size of

the input.
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Travelling Salesman

Naive solution: Consider every permutation of

the n cities, and compute the length of the

resulting tour, saving the shortest length.

How long will this take? We count two main

operations

• Generating the n! permutations.

• Evaluating each tour at cost of O(n).

If we assume that by clever programming, we

can compute each permutation in constant

time, then the total time is O(n.n!).

Is this a good algorithm?
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Good Algorithms

Theoretical computer scientists use a very

broad brush to distinguish between good and

bad algorithms.

An algorithm is good if it runs in time that is a

polynomial function of the size of the input,

otherwise it is bad.

Good O(1) constant time
O(n) linear
O(n lgn) loglinear
O(n2) quadratic
... ...
O(nk) “polynomial”
... ...
... ...

Bad 2n exponential
cn exponential
n! factorial

A problem for which no polynomial time

algorithm can be found is called intractable. As

far as we know, Travelling Salesman is an

intractable problem, though no-one has proved

this.
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Summary

1. An algorithm is a well defined set of rules

for solving a computational problem.

2. A well designed algorithm should be

efficient for problems of all sizes.

3. Algorithms are generally evaluated with

respect to correctness, stability, and

efficiency (for space and speed).

4. Theoretical correctness can be established

using mathematical proof.

5. Numerical stability is required for

algorithms to give accurate answers.
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Summary (cont.)

6. Different kinds of algorithms have been

defined, including brute-force algorithms,

divide and conquer algorithms, greedy

algorithms, dynamic algorithms, and tree

traversals.

7. The efficiency of an algorithm is a measure

of complexity that indicates how long an

algorithm will take.

8. Big “O” is a measure of complexity that is

the asymptotic worst case upper bound.

9. Θ (big theta) is a measure of complexity

that is the asymptotic worst case tight

bound.

10. Average case analysis attempts to measure

how fast an algorithm is for an average

(typical) input.
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Summary (cont.)

11. Insertion sort is a sorting algorithm that

runs in time O(n2).

12. Merge sort is a sorting algorithm that runs

in time O(nlgn).

13. Quicksort is a sorting algorithm that runs

in time O(n2) but is faster than Merge sort

in the average case.

14. Polynomial algorithms (e.g.

O(n), O(nlgn), O(nk)) are regarded as

feasible.

15. Exponential algorithms (e.g. O(2n), O(n))

are regarded as infeasible.
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Overview

1. Introduction

- Terminology and definitions
- Graph representations

2. Tree Search

- Breadth first search
- Depth first search

- Topological sort

3. Minimum Spanning Trees

- Kruskal’s algorithm

- Prim’s algorithm
- Implementations
- Priority first search

4. Shortest Path Algorithms

- Dijkstra’s algorithm
- Bellman-Ford algorithm

- Dynamic Programming
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What is a graph?

Definition A graph G consists of a set V (G)

called vertices together with a collection E(G)

of pairs of vertices. Each pair {x, y} ∈ E(G) is

called an edge of G.

Example If

V (G) = {A, B, C, D}

and

E(G) = {{A, B}, {C, D}, {A, D}, {B, C}, {A, C}}

then G is a graph with 4 vertices and 5 edges.

A B

CD

!
!

!
!

!
!

!
!
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Isomorphisms

Consider the following two graphs:

A B

CD

!
!

!
!

!
!

!
!

1 2 3

4

!
!

!
!

!
!

!
!

""""""""""""""""""

Apart from the “names” of the vertices and

the geometric positions it is clear that these

two graphs are basically the same — in this

situation we say that they are isomorphic.

Definition Two graphs G1 and G2 are

isomorphic if there is a one-one mapping

φ : V (G1) → V (G2) such that

{φ(x), φ(y)} ∈ E(G2) if and only if

{x, y} ∈ E(G1).

In this case the isomorphism is given by the

mapping

φ(A) = 2 φ(B) = 3 φ(C) = 4 φ(D) = 1
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What are graphs used for?

Graphs are used to model a wide range of

commonly occurring situations, enabling

questions about a particular problem to be

reduced to certain well-studied “standard”

graph theory questions.

For examples consider the three graphs G1, G2

and G3 defined as follows:

V (G1) = all the telephone exchanges in

Australia, and {x, y} ∈ E(G1) if exchanges x

and y are physically connected by fibre-optic

cable.

V (G2) = all the airstrips in the world, and

{x, y} ∈ E(G2) if there is a direct passenger

flight from x to y.

V (G3) = all the people who have ever

published a paper in a refereed journal in the

world, and {x, y} ∈ E(G3) if x and y have been

joint authors on a paper.
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More examples

In computing: A graph can be used to

represent processors that are connected via a

communication link in a parallel computer

system.

In chemistry: The vertices of a graph can be

used to represent the carbon atoms in a

molecule, and an edge between two vertices

represents the bond between the corresponding

atoms.

!
!

!

!

!
!

!
!

!
!
!

!
!

"
"

"
"

!
!

"
"!

!"
"
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In games: The vertices can be the 64 squares

on a chessboard, and the edge that joins two

squares can be used to denote the valid

movement of a knight from one square to the

other.
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An example graph

Consider the following graph G4.

1

2

3

4

5

6 7
"

"
"

"
"

"
"

" !
!

!
!

!
!

!
!

The graph G4 has 7 vertices and 9 edges.
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Basic properties of graphs

Let us consider some of the basic terminology

of graphs:

Adjacency If {x, y} ∈ E(G), we say that x and

y are adjacent to each other, and sometimes

write x ∼ y. The number of vertices adjacent

to v is called the degree or valency of v. The

sum of the degrees of the vertices of a graph is

even.

Paths A path of length n in a graph is a

sequence of vertices v1 ∼ v2 ∼ · · · ∼ vn+1 such

that (vi, vi+1) ∈ E(G) and vertices

{v1, v2, . . . , vn+1} are distinct.

Cycles A cycle of length n is a sequence of

vertices v1 ∼ v2 ∼ · · · vn ∼ vn+1 such that

v1 = vn+1, (vi, vi+1) ∈ E(G) and therefore only

vertices {v1, v2, . . . , vn} are distinct.

Distance The distance between two vertices x

and y in a graph is the length of the shortest

path between them.

9

Subgraphs

If G is a graph, then a subgraph H is a graph

such that

V (H) ⊆ V (G)

and

E(H) ⊆ E(G)

A spanning subgraph H has the property that

V (H) = V (G) — in other words H has been

obtained from G only by removing edges.

An induced subgraph H must contain every

edge of G whose endpoints lie in V (H) — in

other words H has been obtained from G by

removing vertices and their adjoining edges.
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Counting Exercises

In the graph G4:

• How many paths are there from 1 to

7?

• How many cycles are there?

• How many spanning subgraphs are

there?

• How many induced subgraphs are

there?

1

2

3

4

5

6 7
!

!
!

!
!

!
!
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"
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"
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"
"
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Connectivity, forests and trees

Connected A graph G is connected if there is

a path between any two vertices. If the graph

is not connected then its connected

components are the maximal induced

subgraphs that are connected.

Forests A forest is a graph that has no cycles.

Trees A tree is a forest with only one

connected component. It is easy to see that a

tree with n vertices must have exactly n − 1

edges.

The vertices of degree 1 in a tree are called

the leaves of the tree.
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Directed and weighted graphs

There are two important extensions to the

basic definition of a graph.

Directed graphs In a directed graph, an

edge is an ordered pair of vertices, and hence

has a direction. In directed graphs, edges are

often called arcs.

Directed Tree Each vertex has at most one

directed edge leading into it, and there is one

vertex (the root) which has a path to every

other vertex.

Weighted graphs In a weighted graph, each

of the edges is assigned a weight (usually a

non-negative integer). More formally we say

that a weighted graph is a graph G together

with a weight function w : E(G) → R (then

w(e) represents the weight of the edge e).
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Distance in weighted graphs

When talking about weighted graphs, we need

to extend the concept of distance.

Definition In a weighted graph X a path

x = x0 ∼ x1 ∼ · · · ∼ xn = y

has weight

i=n−1
∑

i=0

w(xi, xi+1).

The shortest path between two vertices x and

y is the path of minimum weight.
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Representation of graphs

There are two main ways to represent a graph

— adjacency lists or an adjacency matrix.

Adjacency lists The graph G is represented

by an array of |V (G)| linked lists, with each list

containing the neighbours of a vertex.

Therefore we would represent G4 as follows:

7 ! 5 ! 6 !

6 ! 3 ! 5 ! 7 !

5 ! 2 ! 3 ! 4 ! 6 ! 7 !

4 ! 5 !

3 ! 2 ! 5 ! 6 !

2 ! 1 ! 3 ! 5 !

1 ! 2 !

This representation requires two list elements

for each edge and therefore the space required

is Θ(|V (G)| + |E(G)|).

Note: In general to avoid writing |V (G)| and

|E(G)| we shall simply put V = |V (G)| and

E = |E(G)|.

15

For comparison...

...the graph G4.

1

2

3

4

5

6 7
"

"
"

"
"

"
"

" #
#

#
#

#
#

#
#
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Adjacency matrix

The adjacency matrix of a graph G is a V × V

matrix A where the rows and columns are

indexed by the vertices and such that Aij = 1 if

and only if vertex i is adjacent to vertex j.

For graph G4 we have the following

A =

























0 1 0 0 0 0 0
1 0 1 0 1 0 0
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 1 0 1 1
0 0 1 0 1 0 1
0 0 0 0 1 1 0

























The adjacency matrix representation uses

Θ(V 2) space.

For a sparse graph E is much less than V 2, and

hence we would normally prefer the adjacency

list representation.

For a dense graph E is close to V 2 and the

adjacency matrix representation is preferred.
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More on the two representations

For small graphs or those without weighted

edges it is often better to use the adjacency

matrix representation anyway.

It is also easy and more intuitive to define

adjacency matrix representations for directed

and weighted graphs.

However your final choice of representation

depends precisely what questions you will be

asking. Consider how you would answer the

following questions in both representations (in

particular, how much time it would take).

Is vertex v adjacent to vertex w in an

undirected graph?

What is the out-degree of a vertex v in a

directed graph?

What is the in-degree of a vertex v in a

directed graph?
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Recursive Representation

A third representation to consider is a recursive

representation. In this representation you may

not have access to a list of all vertices in the

graph. Instead you have access to a single

vertex, and from that vertex you can deduce

the adjacent vertices.

The following java class is an example of such

a representation:

abstract class Vertex{

int data;

Vertex[] getAdjacentVertices(){}

}

This type of data structure is likely to arise if

you consider, for example, graphs of all states

in a chess game, or communication networks.
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Breadth-first search

Searching through a graph is one of the most

fundamental of all algorithmic tasks, and

therefore we shall examine several techniques

for doing so.

Breadth-first search is a simple but extremely

important technique for searching a graph.

This search technique starts from a given

vertex v and constructs a spanning tree for G,

called the breadth-first tree. It uses a (first-in,

first-out) queue as its main data structure.

Following CLRS (section 22.2), as the search

progresses, we will divide the vertices of the

graph into three categories, black vertices

which are the vertices that have been fully

examined and incorporated into the tree, grey

vertices which are the vertices that have been

seen (because they are adjacent to a tree

vertex) and placed on the queue, and white

vertices, which have not yet been examined.

20



Queues

Recall that a queue is a first-in-first-out buffer.

Items are pushed (or enqueued) onto the end

of the queue, and items can be popped (or

dequeued) from the front of the queue.

A Queue is commonly implemented using

either a block representation, or a linked

representation.

We will assume that the push and pop

operations can be performed in constant time.

You may also assume that we can examine the

first element of the queue, and decide if the

queue is empty, all in constant time (i.e.

Θ(1)).
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Breadth-first search initialization

The final breadth-first tree will be stored as an

array called π where π[x] is the immediate

parent of x in the spanning tree. Of course, as

v is the root of this tree, π[v] will remain

undefined (or nil in CLRS).

To initialize the search we mark the colour of

every vertex as white and the queue is empty.

Then the first step is to mark the colour of v

to be grey, put π[v] to be undefined.
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Breadth-first search repetitive step

Then the following procedure is repeated until

the queue, Q, is empty.

procedure BFS(v)

Push v on to the tail of Q

while Q is not empty

Pop vertex w from the head of Q

for each vertex x adjacent to w do

if colour[x] is white then

π[x] ← w

colour[x] ← grey

Push x on to the tail of Q

end if

end for

colour[w] ← black

end while

At the end of the search, every vertex in the

graph will have colour black and the parent or

predecessor array π will contain the details of

the breadth-first search tree.
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Queues revisited

Recall that a queue is a data structure whereby

the element taken off the data structure is the

element that has been on the queue for the

longest time.

If the maximum length of the queue is known

in advance (and is not too great) then a queue

can be very efficiently implemented by simply

using an array.

An array of n elements is initialized, and two

pointers called head and tail are maintained —

the head gives the location of the next element

to be removed, while the tail gives the location

of the first empty space in the array.

It is trivial to see that both enqueueing and

dequeueing operations take Θ(1) time.

See CLRS (section 10.1) for further details.
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Example of breadth-first search
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Head

↓
queue 1

x colour[x] π[x]
1 grey undef
2 white
3 white
4 white
5 white
6 white
7 white
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After visiting vertex 1
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Head

↓
queue 1 2

x colour[x] π[x]
1 black undef
2 grey 1
3 white
4 white
5 white
6 white
7 white
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After visiting vertex 2
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Head

↓
queue 1 2 3 5

x colour[x] π[x]
1 black undef
2 black 1
3 grey 2
4 white
5 grey 2
6 white
7 white
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After visiting vertex 3
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Head

↓
queue 1 2 3 5 6

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 white
5 grey 2
6 grey 3
7 white
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After visiting vertex 5

1

2

3

4!"
#$
%&
'(

5

6!"
#$
%&
'(

7!"
#$
%&
'(!

!
!

!
!

!
!

! !
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
!!

Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 grey 5
5 black 2
6 grey 3
7 grey 5
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After visiting vertex 6

1

2

3

4!"
#$
%&
'(

5

6 7!"
#$
%&
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!
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!

!
!

!
!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
!!

Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 grey 5
5 black 2
6 black 3
7 grey 5
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After visiting vertex 4

1

2

3

4

5

6 7!"
#$
%&
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!
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!
!

!
!

!
!

!
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!
!

!
!

!
!

!
!!

Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 black 5
5 black 2
6 black 3
7 grey 5
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After visiting vertex 7

1

2

3

4

5

6 7
!

!
!

!
!

!
!

! !
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
!!

Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 black 5
5 black 2
6 black 3
7 black 5
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At termination

At the termination of breadth-first search every

vertex in the same connected component as v

is a black vertex and the array π contains

details of a spanning tree for that component

— the breadth-first tree.

Time analysis

During the breadth-first search each vertex is

enqueued once and dequeued once. As each

enqueueing/dequeueing operation takes

constant time, the queue manipulation takes

Θ(V ) time. At the time the vertex is

dequeued, the adjacency list of that vertex is

completely examined. Therefore we take Θ(E)

time examining all the adjacency lists and the

total time is Θ(V + E).
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Uses of BFS

Breadth-first search is particularly useful for

certain simple tasks such as determining

whether a graph is connected, or finding the

distance between two vertices.

The vertices of G are examined in order of

increasing distance from v — first v, then its

neighbours, then the vertices at distance 2

from v and so on. The spanning tree

constructed provides a shortest path from any

vertex back to v just by following the array π.

Therefore it is simple to modify the

breadth-first search to provide an array of

distances dist where dist[u] is the distance of

the vertex u from the source vertex v.
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Breadth-first search finding distances

To initialize the search we mark the colour of

every vertex as white and the queue is empty.

Then the first step is to mark the colour of v

to be grey, set π[v] to be undefined, set dist[v]

to be 0, and add v to the queue, Q. Then we

repeat the following procedure.

while Q is not empty

Pop vertex w from the head of Q

for each vertex x adjacent to w do

if colour[x] is white then

dist[x] ← dist[w]+1

π[x] ← w

colour[x] ← grey

Push x on to the tail of Q

end if

end for

colour[w] ← black

end while
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Depth-first search

Depth-first search is another important

technique for searching a graph. Similarly to

breadth-first search it also computes a

spanning tree for the graph, but the tree is

very different.

The structure of depth-first search is naturally

recursive so we will give a recursive description

of it. Nevertheless it is useful and important to

consider the non-recursive implementation of

the search.

The fundamental idea behind depth-first search

is to visit the next unvisited vertex, thus

extending the current path as far as possible.

When the search gets stuck in a “corner” we

back up along the path until a new avenue

presents itself (this is called backtracking).
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Basic recursive depth-first search

The following recursive program computes the

depth-first search tree for a graph G starting

from the source vertex v.

To initialize the search we mark the colour of

every vertex as white. Then we call the

recursive routine DFS(v) where v is the source

vertex.

procedure DFS(w)

colour[w] ← grey

for each vertex x adjacent to w do

if colour[x] is white then

π[x] ← w

DFS(x)

end if

end for

colour[w] ← black

At the end of this depth-first search procedure

we have produced a spanning tree containing

every vertex in the connected component

containing v.
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A Non-recursive DFS

All recursive algorithms can be implemented as

non-recursive algorithms. A non-recursive DFS

requires a stack to record the previously visited

vertices.

procedure DFS(w)

initialize stack S

push w onto S

while S not empty do

x ← pop off S

if colour[x]=white then

colour[x] ← black

for each vertex y adjacent to x do

if colour[y] is white then

push y onto S

π[y] ← x

end if

end for

end if

end while
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Example of depth-first search

1

2

3

4

5

6 7
!

!
!

!
!

!
!

! "
"

"
"

"
"

"
"

x colour[x] π[x]
1 white undef
2 white
3 white
4 white
5 white
6 white
7 white
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Immediately prior to calling DFS(2)

1!"
#$
%&
'(

2

3

4

5

6 7
!

!
!

!
!

!
!

! "
"

"
"

"
"

"
"

x colour[x] π[x]
1 grey undef
2 white 1
3 white
4 white
5 white
6 white
7 white
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Immediately prior to calling DFS(3)

1!"
#$
%&
'(

2!"
#$
%&
'(

3

4

5

6 7
!

!
!

!
!

!
!

! "
"

"
"

"
"

"
"

x colour[x] π[x]
1 grey undef
2 grey 1
3 white 2
4 white
5 white
6 white
7 white
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Immediately prior to calling DFS(5)

1!"
#$
%&
'(

2!"
#$
%&
'(

3!"
#$
%&
'(

4

5

6 7
!

!
!

!
!

!
!

!!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
! "

"
"

"
"

"
"

"

x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 white
5 white 3
6 white
7 white
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Immediately prior to calling DFS(4)

1!"
#$
%&
'(

2!"
#$
%&
'(

3!"
#$
%&
'(

4

5!"
#$
%&
'(

6 7
!

!
!

!
!

!
!

!!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
! "

"
"

"
"

"
"

"

x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 white 5
5 grey 3
6 white
7 white
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Immediately prior to calling DFS(6)

Now the call to DFS(4) actually finishes

without making any more recursive calls so we

return to examining the neighbours of vertex 5,

the next of which is vertex 6.

1!"
#$
%&
'(

2!"
#$
%&
'(

3!"
#$
%&
'(
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5!"
#$
%&
'(

6 7
!

!
!

!
!

!
!

!!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
! "

"
"

"
"

"
"

"

x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 black 5
5 grey 3
6 white 5
7 white
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Immediately prior to calling DFS(7)

1!"
#$
%&
'(

2!"
#$
%&
'(

3!"
#$
%&
'(

44

5!"
#$
%&
'(

6!"
#$
%&
'(

7
!

!
!

!
!

!
!

!!

!
!

!
!

!
!

!
!!

!
!

!
!

!
!

!
! !

!
!

!
!

!
!

!

x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 black 5
5 grey 3
6 grey 5
7 white 6
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The depth-first search tree

After completion of the search we can draw

the depth-first search tree for this graph:

1

2

3

5

4 6

7

!
!

! "
"

"

"
"

"

)

)

*

+

In this picture the slightly thicker straight

edges are the tree edges (see later) and the

remaining edges are the back edges — the

back edges arise when we examine an edge

(u, v) and discover that its endpoint v no

longer has the colour white
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Analysis of DFS

The running time of DFS is easy to analyse as

follows.

First we observe that the routine DFS(w) is

called exactly once for each vertex w; during

the execution of this routine we perform only

constant time array accesses, and run through

the adjacency list of w once.

Running through the adjacency list of each

vertex exactly once takes Θ(E) time overall,

and hence the total time taken is Θ(V + E).

In fact, we can say more and observe that

because every vertex and every edge are

examined precisely once in both BFS and DFS,

the time taken is Θ(V + E).
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Discovery and finish times

The operation of depth-first search actually

gives us more information than simply the

depth-first search tree; we can assign two

times to each vertex.

Consider the following modification of the

search, where time is a global variable that

starts at time 1.

procedure DFS(w)

colour[w] ← grey

discovery[w] ← time

time ← time+1

for each vertex x adjacent to w do

if colour[x] is white then

π[x] ← w

DFS(x)

end if

end for

colour[w] ← black

finish[w] ← time

time ← time+1
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The parenthesis property

This assigns to each vertex a discovery time,

which is the time at which it is first discovered,

and a finish time, which is the time at which

all its neighbours have been searched and it no

longer plays any further role in the search.

The discovery and finish times satisfy a

property called the parenthesis property.

Imagine writing down an expression consisting

entirely of labelled parentheses — at the time

of discovering vertex u we open a parenthesis

(u and a the time of finishing with u we close

the parenthesis u).

Then the resulting expression is a well-formed

expression with correctly nested parentheses.

For our example depth-first search we get:

(1 (2 (3 (4 (5 5) (6 (7 7) 6) 4) 3) 2) 1)
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Depth-first search for directed graphs

A depth-first search on an undirected graph

produces a classification of the edges of the

graph into tree edges, or back edges. For a

directed graph, there are further possibilities.

The same depth-first search algorithm can be

used to classify the edges into four types:

tree edges If the procedure DFS(u) calls

DFS(v) then (u, v) is a tree edge

back edges If the procedure DFS(u) explores

the edge (u, v) but finds that v is an

already visited ancestor of u, then (u, v) is

a back edge

forward edges If the procedure DFS(u)

explores the edge (u, v) but finds that v is

an already visited descendant of u, then

(u, v) is a forward edge

cross edges All other edges are cross-edges
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Topological sort

We shall consider a classic simple application

of depth-first search.

Definition A directed acyclic graph (dag) is a

directed graph with no directed cycles.

Theorem In a depth-first search of a dag there

are no back edges.

Consider now some complicated process in

which various jobs must be completed before

others are started. We can model this by a

graph D where the vertices are the jobs to be

completed and there is an edge from job u to

job v if job u must be completed before job v is

started. Our aim is to find some linear ordering

of the jobs such that they can be completed

without violating any of the constraints.

This is called finding a topological sort of the

dag D.
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Example of a dag to be topologically sorted

For example, consider this dag describing the

stages of getting dressed and the dependency

between items of clothing (from CLRS, page

550).

underpants

trousers

belt

jacket

tie

shirt

shoes

socks

watch

What is the appropriate linear order in which to

do these jobs so that all the precedences are

satisfied.
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Algorithm for TOPOLOGICAL SORT

The algorithm for topological sort is an

extremely simple application of depth-first

search.

Algorithm

Apply the depth-first search procedure to find

the finishing times of each vertex. As each

vertex is finished, put it onto the front of a

linked list.

At the end of the depth-first search the linked

list will contain the vertices in topologically

sorted order.
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Doing the topological sort

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P
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!"

!"

!"

!"

"!

"!

"!

!
"

!
"

!
"

"
!

!
"

"
!

!
"

"
!

"
!

!
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"
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After the first depth-first search

A
1/28

B
2/27

C
3/26

D
4/7

E
11/12

F
9/24

G
8/25

H
5/6

I
13/16

J
10/23

K
17/22

L
18/21

M
14/15

N

O

P
19/20
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"
!

!
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

!
!

!
!

!
!

!
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!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

"
"

"
"

"
"

"
"

Notice that there is a component that has not

been reached by the depth-first search. To

complete the search we just repeatedly perform

depth-first searches until all vertices have been

examined.
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After the entire search

A
1/28

B
2/27

C
3/26

D
4/7

E
11/12

F
9/24

G
8/25

H
5/6

I
13/16

J
10/23

K
17/22

L
18/21

M
14/15

N
30/31

O
29/32

P
19/20
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!
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"
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"
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"
"

"
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"
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"
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"
"

"
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!
!

!
!

!
!

!
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!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!!

"
"

"
"

"
"

"
"

As the vertices were placed at the front of a

linked list as they became finished the final

topological sort is: O −N −A−B −C −G− F −

J − K − L − P − I − M − E − D − H

A topologically sorted dag has the property

that any edges drawn in the above diagram will

got from left-to-right.
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Analysis and correctness

Time analysis of the algorithm is very easy —

to the Θ(V + E) time for the depth-first search

we must add Θ(V ) time for the manipulation

of the linked list. Therefore the total time

taken is again Θ(V + E).

Proof of topological sort

Suppose DFS has calculated the finish times of

a dag G = (V, E). For any pair of adjacent

vertices u, v ∈ V (implying (u, v) ∈ E) then we

just need to show f [v] < f [u] (the destination

vertex v must finish first).

For each edge (u, v) explored by DFS of G

consider the colour of vertex v.

GREY: v can never be grey since v should

therefore be an ancestor of u and so the graph

would be cyclic.
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Proof (contd)

WHITE: v is a descendant of u so we will set

its time now but we are still exploring u so we

will set its finished time at some point in the

future (and so therefore f [v] < f [u]). (refer

back to the psuedocode).

BLACK: v has already been visited and so its

finish time must have been set earlier, whereas

we are still exploring u and so we will set its

finish time in the future (and so again

f [v] < f [u]).

Since for every edge in G there are two

possible destination vertex colours and in each

case we can show f [v] < f [u], we have shown

that this property applies to every connected

vertex in G.

See CLRS (theorem 22.11) for a more

thorough treatment.
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Other uses for DFS

DFS is the standard algorithmic method for

solving the following two problems:

Strongly connected components In a

directed graph D a strongly connected

component is a maximal subset S of the

vertices such that for any two vertices u, v ∈ S

there is a directed path from u to v and from v

to u.

Depth-first search can be used on a digraph to

find strongly connected components in time

Θ(V + E).

Articulation points In a connected,

undirected graph, an articulation point is a

vertex whose removal disconnects the graph.

Depth-first search can be used on a graph to

find all the articulation points in time

Θ(V + E).
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Minimum spanning tree (MST)

Consider a group of villages in a remote area

that are to be connected by telephone lines.

There is a certain cost associated with laying

the lines between any pair of villages,

depending on their distance apart, the terrain

and some pairs just cannot be connected.

Our task is to find the minimum possible cost

in laying lines that will connect all the villages.

This situation can be modelled by a weighted

graph W , in which the weight on each edge is

the cost of laying that line. A minimum

spanning tree in a graph is a subgraph that is

(1) a spanning subgraph (2) a tree and (3) has

a lower weight than any other spanning tree.

It is clear that finding a MST for W is the

solution to this problem.
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The greedy method

Definition A greedy algorithm is an algorithm

in which at each stage a locally optimal choice

is made.

A greedy algorithm is therefore one in which no

overall strategy is followed, but you simply do

whatever looks best at the moment.

For example a mountain climber using the

greedy strategy to climb Everest would at

every step climb in the steepest direction.

From this analogy we get the computational

search technique known as hill-climbing.

In general greedy methods have limited use,

but fortunately, the problem of finding a

minimum spanning tree can be solved by a

greedy method.
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Kruskal’s method

Kruskal invented the following very simple

method for building a minimum spanning tree.

It is based on building a forest of lowest

possible weight and continuing to add edges

until it becomes a spanning tree.

Kruskal’s method

Initialize F to be the forest with all the vertices

of G but none of the edges.

repeat

Pick an edge e of minimum possible weight

if F ∪ {e} is a forest then

F ← F ∪ {e}

end if

until F contains n − 1 edges

Therefore we just keep on picking the smallest

possible edge, and adding it to the forest,

providing that we never create a cycle along

the way.
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Example
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After using edges of weight 1

2
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1

4

2
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After using edges of weight 2
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4

2
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The final MST

2

7

1

4

2

1

5

5

2

6

2

2

2

8

1

1

5

2

6

3

1

2

2

1

66

Prim’s algorithm

Prim’s algorithm is another greedy algorithm

for finding a minimum spanning tree.

The idea behind Prim’s algorithm is to grow a

minimum spanning tree edge-by-edge by always

adding the shortest edge that touches a vertex

in the current tree.

Notice the difference between the algorithms:

Kruskal’s algorithm always maintains a

spanning subgraph which only becomes a tree

at the final stage.

On the other hand, Prim’s algorithm always

maintains a tree which only becomes spanning

at the final stage.
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Prim’s algorithm in action
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One solution
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Problem solved?

As far as a mathematician is concerned the

problem of a minimum spanning tree is

well-solved. We have two simple algorithms

both of which are guaranteed to find the best

solution. (After all, a greedy algorithm must

be one of the simplest possible).

In fact, the reason why the greedy algorithm

works in this case is well understood — the

collection of all the subsets of the edges of a

graph that do not contain a cycle forms what

is called a (graphic) matroid (see CLRS,

section 16.4).

Loosely speaking, a greedy algorithm always

works on a matroid and never works otherwise.
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Implementation issues

In fact the problem is far from solved because

we have to decide how to implement the two

greedy algorithms.

The details of the implementation of the two

algorithms are interesting because they use

(and illustrate) two important data structures

— the partition and the priority queue.
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Implementation of Kruskal

The main problem in the implementation of

Kruskal is to decide whether the next edge to

be added is allowable — that is, does it create

a cycle or not.

Suppose that at some stage in the algorithm

the next shortest edge is {x, y}. Then there are

two possibilities:

x and y lie in different trees of F : In this

case adding the edge does not create any

new cycles, but merges together two of the

trees of F

x and y lie in the same tree of F : In this

case adding the edge creates a cycle and

the edge should not be added to F

Therefore we need data structures that allow

us to quickly find the tree to which an element

belongs and quickly merge two trees.
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Partitions or disjoint sets

The appropriate data structure for this problem

is the partition (sometimes known under the

name disjoint sets). Recall that a partition of a

set is a collection of disjoint subsets (called

cells) that cover the entire set.

At the beginning of Kruskal’s algorithm we

have a partition of the vertices into the

discrete partition where each cell has size 1.

As each edge is added to the minimum

spanning tree, the number of cells in the

partition decreases by one.

The operations that we need for Kruskal’s

algorithm are

Union(cell,cell) Creates a new partition by

merging two cells

Find(element) Finds the cell containing a

given element
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Naive partitions

One simple way to represent a partition is

simply to choose one element of each cell to

be the “leader” of that cell. Then we can

simply keep an array π of length n where π(x)

is the leader of the cell containing x.

Example Consider the partition of 8 elements

into 3 cells as follows:

{0,2 | 1,3,5 | 4,6,7}

We could represent this as an array as follows

x 0 1 2 3 4 5 6 7
π(x) 0 1 0 1 4 1 4 4

Then certainly the operation Find is

straightforward — we can decide whether x

and y are in the same cell just by comparing

π(x) with π(y).

Thus Find has complexity Θ(1).
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Updating the partition

Suppose now that we wish to update the

partition by merging the first two cells to

obtain the partition

{0,1,2,3,5 | 4,6,7}

We could update the data structure by running

through the entire array π and updating it as

necessary.

x 0 1 2 3 4 5 6 7
π(x) 0 0 0 0 4 0 4 4

This takes time Θ(n), and hence the merging

operation is rather slow.

Can we improve the time of the merging

operation?
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The disjoint sets forest

Consider the following graphical representation

of the data structure above, where each

element points (upwards) to the “leader” of

the cell.
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Merging two cells is accomplished by adjusting

the pointers so they point to the new leader.
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However we can achieve something similar by

just adjusting one pointer — suppose we

simply change the pointer for the element 1, by

making it point to 0 instead of itself.
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The new data structure

Just adjusting this one pointer results in the

following data structure.
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This new improved merging has complexity

only Θ(1). However we have now lost the

ability to do the Find properly. In order to

correctly find the leader of the cell containing

an element we have to run through a little

loop:

procedure Find(x)

while x != π(x)

x = π(x)

This new find operation may take time O(n) so

we seem to have gained nothing.
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Union-by-rank heuristic

There are two heuristics that can be applied to

the new data structure, that speed things up

enormously at the cost of maintaining a little

extra data.

Let the rank of a root node of a tree be the

height of that tree (the maximum distance

from a leaf to the root).

The union-by-rank heuristic tries to keep the

trees balanced at all times. When a merging

operation needs to be done, the root of the

shorter tree is made to point to the root of the

taller tree. The resulting tree therefore does

not increase its height unless both trees are the

same height in which case the height increases

by one.
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Path compression heuristic

The path compression heuristic is based on the

idea that when we perform a Find(x)

operation we have to follow a path from x to

the root of the tree containing x.

After we have done this why do we not simply

go back down through this path and make all

these elements point directly to the root of the

tree, rather than in a long chain through each

other?

This is reminiscent of our naive algorithm,

where we made every element point directly to

the leader of its cell, but it is much cheaper

because we only alter things that we needed to

look at anyway.
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Complexity of Kruskal

In the worst case, we will perform E operations

on the partition data structure which has size

V . By the complicated argument in CLRS we

see that the total time for these operations if

we use both heuristics is O(E lg∗ V ). (Note:

lg∗ x is the iterated log function, which grows

extremely slowly with x; see CLRS, page 56)

However we must add to this the time that is

needed to sort the edges — because we have

to examine the edges in order of length. This

time is O(E lgE) if we use a sorting technique

such as mergesort, and hence the overall

complexity of Kruskal’s algorithm is O(E lgE).
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Implementation of Prim

For Prim’s algorithm we repeatedly have to

select the next vertex that is closest to the

tree that we have built so far. Therefore we

need some sort of data structure that will

enable us to associate a value with each vertex

(being the distance to the tree under

construction) and rapidly select the vertex with

the lowest value.

From our study of Data Structures we know

that the appropriate data structure is a priority

queue and that a priority queue is implemented

by using a heap.
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The priority queue ADT

Recall that a priority queue is an abstract data

type that stores objects with an associated key.

The priority of the object depends on the value

of the key.

The operations associated with this data type

include

insert(queue,entry,key) Places an entry with

its associated key into the data structure

change(queue,entry,newkey) Changes the

value of the key associated with a given

entry

max(queue) Returns the element with the

highest priority

extractmax(queue) Returns the element with

the highest priority from the queue and

deletes it from the queue
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Heaps

A heap is a complete binary tree such that the

key associated with any node is larger than (or

equal to) the key associated with either of its

children. This means that the root of the

binary tree has the largest key.
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We can insert items into a heap, change the

key value of an item in the heap, and remove

the item at the root from a heap, (always

maintaining the heap property) in time

O(logn), where n is the size of the heap.

A heap can be used to implement all priority

queue operations in time O(logn).
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Prim’s algorithm

It is now easy to see how to implement Prim’s

algorithm.

We first initialize our priority queue Q to

empty. We then select an arbitrary vertex s to

grow our minimum spanning tree A and set the

key value of s to 0. In addition, we maintain an

array, π, where each element π[v] contains the

vertex that connects v to the spanning tree

being grown.

Here we want low key values to represent high

priorities, so we will rename our two last

priority queue operations to min(queue) and

extractmin(queue).

Next, we add each vertex v != s to Q and set

the key value key[v] using the following criteria:

key[v] =

{

weight(v, s) if (v, s) ∈ E
∞ otherwise
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Each time an element is added to the priority

queue Q, a heapify is carried out to maintain

the heap property of Q. Since low key values

represent high priorities, the heap for Q is so

maintained that the key associated with any

node is smaller (rather than larger) than the

key of any of its children. This means that the

root of the binary tree always has the smallest

key.

We store the following information in the

minimum spanning tree A: (v, key[v], π[v]).

Thus, at the beginning of the algorithm,

A = {(s,0, undef)}.

At each stage of the algorithm:

1. We extract the vertex u that has the

highest priority (that is, the lowest key

value!). With the binary tree being

heapified, u is simply the root of the tree.

2. We add (u, key[u], π[u]) to A and carry out

extractmin(Q)
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3. We then examine the neighbours of u. For

each neighbour v, there are two

possibilities:

(a) If v is is already in the spanning tree A

being constructed then we do not

consider it further.

(b) If v is currently on the priority queue Q,

then we see whether this new edge (u, v)

should cause an update in the priority of

v. If the value weight(u, v) is lower than

the current key value of v, then we

change key[v] to weight(u, v) and set

π[v] = u. Note that each time the key

value of a vertex in Q is updated, a

heapify is carried out to maintain the

heap property of Q.

At the termination of the algorithm, Q = ∅ and

the spanning tree A contain all the edges,

together with their weights, that span the tree.
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Complexity of Prim

The complexity of Prim’s algorithm is

dominated by the heap operations.

Every vertex is extracted from the priority

queue at some stage, hence the extractmin

operations in the worst case take time

O(V lgV ).

Also, every edge is examined at some stage in

the algorithm and each edge examination

potentially causes a change operation. Hence

in the worst case these operations take time

O(E lgV ).

Therefore the total time is

O(V lgV + E lgV ) = O(E lgV )

Which is the better algorithm: Kruskal’s or

Prim’s?
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Priority-first search

Let us generalize the ideas behind this

implementation of Prim’s algorithm.

Consider the following very general

graph-searching algorithm. We will later show

that by choosing different specifications of the

priority we can make this algorithm do very

different things. This algorithm will produce a

priority-first search tree.

The key-values or priorities associated with

each vertex are stored in an array called key.

Initially we set key[v] to ∞ for all the vertices

v ∈ V (G) and build a heap with these keys —

this can be done in time O(V ).

Then we select the source vertex s for the

search and perform change(s,0) to change the

key of s to 0, thus placing s at the top of the

priority queue.
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The operation of PFS

After initialization the operation of PFS is as

follows:

procedure PFS(s)

change(s,0)

while Q != ∅

u ← extractmin(Q)

for each v adjacent to u do

if v ∈ Q ∧ PRIORITY < key[v] then

π[v] ← u

change(Q,v,PRIORITY)

end if

end for

end while

It is important to notice how the array π is

managed — for every vertex v ∈ Q with a finite

key value, π[v] is the vertex not in Q that was

responsible for the key of v reaching the

highest priority it has currently reached.
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Complexity of PFS

The complexity of this search is easy to

calculate — the main loop is executed V

times, and each extractmin operation takes

O(lgV ) yielding a total time of O(V lgV ) for

the extraction operations.

During all V operations of the main loop we

examine the adjacency list of each vertex

exactly once — hence we make E calls, each

of which may cause a change to be performed.

Hence we do at most O(E lgV ) work on these

operations.

Therefore the total is

O(V lgV + E lgV ) = O(E lgV ).
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Prim’s algorithms is PFS

Prim’s algorithm can be expressed as a

priority-first search by observing that the

priority of a vertex is the weight of the shortest

edge joining the vertex to the rest of the tree.

This is achieved in the code above by simply

replacing the string PRIORITY by

weight(u, v)

At any stage of the algorithm:

• The vertices not in Q form the tree so far.

• For each vertex v ∈ Q, key[v] gives the length

of the shortest edge from v to a vertex in the

tree, and π[v] shows which tree vertex that is.
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Shortest paths

Let G be a directed weighted graph. The

shortest path between two vertices v and w is

the path from v to w for which the sum of the

weights on the path-edges is lowest. Notice

that if we take an unweighted graph to be a

special instance of a weighted graph, but with

all edge weights equal to 1, then this coincides

with the normal definition of shortest path.

The weight of the shortest path from v to w is

denoted by δ(v, w).

Let s ∈ V (G) be a specified vertex called the

source vertex.

The single-source shortest paths problem is to

find the shortest path from s to every other

vertex in the graph (as opposed to the all-pairs

shortest paths problem, where we must find

the distance between every pair of vertices).
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Dijkstra’s algorithm

Dijkstra’s algorithm is a famous single-source

shortest paths algorithm suitable for the cases

when the weights are all non-negative.

Dijkstra’s algorithm can be implemented as a

priority-first search by taking the priority of a

vertex v ∈ Q to be the shortest path from s to

v that consists entirely of vertices in the

priority-first search tree (except of course for

v).

This can be implemented as a PFS by

replacing PRIORITY with

key[u] + weight(u, v)

At the end of the search, the array key[]

contains the lengths of the shortest paths from

the source vertex s.
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Dijkstra’s algorithm in action
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Proof of correctness

It is possible to prove that Dijkstra’s algorithm
is correct by proving the following claim
(assuming T = V (G) − Q is the set of vertices
that have already been removed from Q).

At the time that a vertex u is removed
from Q and placed into T
key[u] = δ(s, u).

This is a proof by contradiction, meaning that
we try to prove key[u] #= δ(s, u) and if we fail
then we will have proved the opposite.

Assuming u #= s then T #= ∅ and there exists a
path p from s to u. We can decompose the
path into three sections:

1. A path p1 from s to vertex x, such that
x ∈ T and the path is of length 0 or more.

2. An edge between x and y, such that y ∈ Q
and (x, y) ∈ E(G).

3. A path p2 from y to u of length 0 or more.
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Proof (contd)

The decomposed path may be illustrated thus.

T=V(G)!Q

x y

u

s

p1 p2

Firstly, we know key[y] = δ(s, y) since the edge

(x, y) will have been examined when x was

added to T .

Furthermore, we know that y is before u on

path p and therefore δ(s, y) ≤ δ(s, u). This

implies key[y] ≤ key[u] (inequality A).
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Proof (contd)

But we also know that u was chosen from Q

before y which implies key[u] ≤ key[y]

(inequality B) since the priority queue always

returns the vertex with the smallest key.

Inequalities A and B can only be satisfied if

key[u] = key[y] but this implies

key[u] = δ(s, u) = δ(s, y) = key[y]

But our initial assumption was that

key[u] "= δ(s, u) giving rise to the contradiction.

Hence we have proved that key[u] = δ(s, u) at

the time that u enters T .
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Relaxation

Consider the following property of Dijkstra’s

algorithm.

• At any stage of Dijkstra’s algorithm the

following inequality holds:

δ(s, v) ≤ key[v]

This is saying that the key[] array always holds

a collection of upper bounds on the actual

values that we are seeking. We can view these

values as being our “best estimate” to the

value so far, and Dijkstra’s algorithm as a

procedure for systematically improving our

estimates to the correct values.

The fundamental step in Dijkstra’s algorithm,

where the bounds are altered is when we

examine the edge (u, v) and do the following

operation

key[v] ← min(key[v], key[u] + weight(u, v))

This is called relaxing the edge (u, v).
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Relaxation schedules

Consider now an algorithm that is of the

following general form:

• Initially an array d[] is initialized to

have d[s] = 0 for some source vertex s

and d[v] = ∞ for all other vertices

• A sequence of edge relaxations is

performed, possibly altering the values

in the array d[].

We observe that the value d[v] is always an

upper bound for the value δ(s, v) because

relaxing the edge (u, v) will either leave the

upper bound unchanged or replace it by a

better estimate from an upper bound on a

path from s → u → v.

Dijkstra’s algorithm is a particular schedule for

performing the edge relaxations that

guarantees that the upper bounds converge to

the exact values.
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Negative edge weights

Dijkstra’s algorithm cannot be used when the

graph has some negative edge-weights (why

not? find an example).

In general, no algorithm for shortest paths can

work if the graph contains a cycle of negative

total weight (because a path could be made

arbitrarily short by going round and round the

cycle). Therefore the question of finding

shortest paths makes no sense if there is a

negative cycle.

However, what if there are some negative edge

weights but no negative cycles?

The Bellman-Ford algorithm is a relaxation

schedule that can be run on graphs with

negative edge weights. It will either fail in

which case the graph has a negative cycle and

the problem is ill-posed, or will finish with the

single-source shortest paths in the array d[].
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Bellman-Ford algorithm

The initialization step is as described above.

Let us suppose that the weights on the edges

are given by the function w.

Then consider the following relaxation

schedule:

for i = 1 to |V (G)|− 1 do

for each edge (u, v) ∈ E(G) do

d[v] ← min(d[v], d[u] + w(u, v))

end for each

end for

Finally we make a single check to determine if

we have a failure:

for each edge (u, v) ∈ E(G) do

if d[v] > d[u] + w(u, v) then

FAIL

end if

end for each
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Complexity of Bellman-Ford

The complexity is particularly easy to calculate

in this case because we know exactly how

many relaxations are done — namely E(V − 1),

and adding that to the final failure check loop,

and the initialization loop we see that

Bellman-Ford is O(EV )

There remains just one question — how does

it work?
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Correctness of Bellman-Ford

Let us consider some of the properties of

relaxation in a graph with no negative cycles.

Property 1 Consider an edge (u, v) that lies on

the shortest path from s to v. If the sequence

of relaxations includes relaxing (u, v) at a stage

when d[u] = δ(s, u), then d[v] is set to δ(s, v)

and never changes after that.

Once convinced that Property 1 holds we can

show that the algorithm is correct for graphs

with no negative cycles, as follows.

Consider any vertex v and let us examine the

shortest path from s to v, namely

s ∼ v1 ∼ v2 · · · vk ∼ v
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Now at the initialization stage d[s] = 0 and it

always remains the same. After one pass

through the main loop the edge (s, v1) is

relaxed and by Property 1, d[v1] = δ(s, v1) and

it remains at that value. After the second pass

the edge (v1, v2) is relaxed and after this

relaxation we have d[v2] = δ(s, v2) and it

remains at this value.

As the number of edges in the path is at most

|V (G)|− 1, after all the loops have been

performed d[v] = δ(s, v).

Note that this is an inductive argument where

the induction hyptohesis is “after n iterations,

all shortest paths of length n have been found”.
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All-pairs shortest paths

Now we turn our attention to constructing a

complete table of shortest distances, which

must contain the shortest distance between

any pair of vertices.

If the graph has no negative edge weights then

we could simply make V runs of Dijkstra’s

algorithm, at a total cost of O(V E lgV ),

whereas if there are negative edge weights then

we could make V runs of the Bellman-Ford

algorithm at a total cost of O(V 2E).

The two algorithms we shall examine both use

the adjacency matrix representation of the

graph, hence are most suitable for dense

graphs. Recall that for a weighted graph the

weighted adjacency matrix A has weight(i, j) as

its ij-entry, where weight(i, j) = ∞ if i and j are

not adjacent.
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A dynamic programming method

Dynamic programming is a general algorithmic

technique for solving problems that can be

characterised by two features:

• The problem is broken down into a

collection of smaller subproblems

• The solution is built up from the

stored values of the solutions to all of

the subproblems

For the all-pairs shortest paths problem we

define the simpler problem to be

“What is the length of the shortest path from

vertex i to j that uses at most m edges?”

We shall solve this for m = 1, then use that

solution to solve for m = 2, and so on . . .
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The initial step

We shall let d
(m)
ij denote the distance from

vertex i to vertex j along a path that uses at

most m edges, and define D(m) to be the

matrix whose ij-entry is the value d
(m)
ij .

As a shortest path between any two vertices

can contain at most V − 1 edges, the matrix

D(V −1) contains the table of all-pairs shortest

paths.

Our overall plan therefore is to use D(1) to

compute D(2), then use D(2) to compute D(3)

and so on.

The case m = 1

Now the matrix D(1) is easy to compute — the

length of a shortest path using at most one

edge from i to j is simply the weight of the

edge from i to j. Therefore D(1) is just the

adjacency matrix A.
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The inductive step

What is the smallest weight of the path from

vertex i to vertex j that uses at most m edges?

Now a path using at most m edges can either

be

(1) A path using less than m edges

(2) A path using exactly m edges,

composed of a path using m − 1 edges

from i to an auxiliary vertex k and the

edge (k, j).

We shall take the entry d
(m)
ij to be the lowest

weight path from the above choices.

Therefore we get

d
(m)
ij = min

(

d
(m−1)
ij , min

1≤k≤V
{d(m−1)

ik + w(k, j)}

)

= min
1≤k≤V

{d(m−1)
ik + w(k, j)}
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Example

Consider the weighted graph with the following

weighted adjacency matrix:

A = D(1) =

















0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

















Let us see how to compute an entry in D(2),

suppose we are interested in the (1,3) entry:

Then we see that

1 → 1 → 3 has cost 0 + 11 = 11

1 → 2 → 3 has cost ∞ + 4 = ∞
1 → 3 → 3 has cost 11 + 0 = 11

1 → 4 → 3 has cost 2 + 6 = 8

1 → 5 → 3 has cost 6 + 6 = 12

The minimum of all of these is 8, hence the

(1,3) entry of D(2) is set to 8.
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Computing D(2)

















0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

































0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

















=

















0 4 8 2 5
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
16 ∞ 6 ∞ 0

















If we multiply two matrices AB = C, then we
compute

cij =
k=V
∑

k=1

aikbkj

If we replace the multiplication aikbkj by
addition aik + bkj and replace summation Σ by
the minimum min then we get

cij =
k=V
min
k=1

aik + bkj

which is precisely the operation we are
performing to calculate our matrices.
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The remaining matrices

Proceeding to compute D(3) from D(2) and A,

and then D(4) from D(3) and A we get:

D(3) =

















0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 ∞ 6 18 0

















D(4) =

















0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0
















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A new matrix “product”

Recall the method for computing d
(m)
ij , the

(i, j) entry of the matrix D(m) using the

method similar to matrix multiplication.

d
(m)
ij ← ∞

for k = 1 to V do

d
(m)
ij = min(d

(m)
ij , d

(m−1)
ik + w(k, j))

end for

Let us use ! to denote this new matrix product.

Then we have

D(m) = D(m−1) ! A

Hence it is an easy matter to see that we can

compute as follows:

D(2) = A ! A D(3) = D(2) ! A . . .
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Complexity of this method

The time taken for this method is easily seen

to be Θ(V 4) as it performs V matrix

“multiplications” each of which involves a

triply nested for loop with each variable

running from 1 to V .

However we can reduce the complexity of the

algorithm by remembering that we do not need

to compute all the intermediate products D(1),

D(2) and so on, but we are only interested in

D(V −1). Therefore we can simply compute:

D(2) = A ! A

D(4) = D(2) ! D(2)

D(8) = D(4) ! D(4)

Therefore we only need to do this operation at

most lgV times before we reach the matrix we

want. The time required is therefore actually

Θ(V 3"lgV #).
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Floyd-Warshall

The Floyd-Warshall algorithm uses a different

dynamic programming formalism.

For this algorithm we shall define d
(k)
ij to be the

length of the shortest path from i to j whose

intermediate vertices all lie in the set {1, . . . , k}.

As before, we shall define D(k) to be the

matrix whose (i, j) entry is d
(k)
ij .

The initial case

What is the matrix D(0) — the entry d
(0)
ij is

the length of the shortest path from i to j with

no intermediate vertices. Therefore D(0) is

simply the adjacency matrix A.
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The inductive step

For the inductive step we assume that we have

constructed already the matrix D(k−1) and

wish to use it to construct the matrix D(k).

Let us consider all the paths from i to j whose

intermediate vertices lie in {1,2, . . . , k}. There

are two possibilities for such paths

(1) The path does not use vertex k

(2) The path does use vertex k

The shortest possible length of all the paths in

category (1) is given by d
(k−1)
ij which we

already know.

If the path does use vertex k then it must go

from vertex i to k and then proceed on to j,

and the length of the shortest path in this

category is d
(k−1)
ik + d

(k−1)
kj .
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The overall algorithm

The overall algorithm is then simply a matter

of running V times through a loop, with each

entry being assigned as the minimum of two

possibilities. Therefore the overall complexity

of the algorithm is just O(V 3).

D(0) ← A

for k = 1 to V do

for i = 1 to V do

for j = 1 to V do

d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj )

end for j

end for i

end for k

At the end of the procedure we have the

matrix D(V ) whose (i, j) entry contains the

length of the shortest path from i to j, all of

whose vertices lie in {1,2, . . . , V } — in other

words, the shortest path in total.
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Example

Consider the weighted directed graph with the

following adjacency matrix:

D(0) =

















0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

















Let us see how to compute D(1)

D(1) =

















0 ∞ 11 2 6
1 0 4
10 ∞ 0
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

















To find the (2,4) entry of this matrix we have

to consider the paths through the vertex 1 —

is there a path from 2 – 1 – 4 that has a

better value than the current path? If so, then

that entry is updated.
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The entire sequence of matrices

D(2) =

















0 ∞ 11 2 6
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
∞ ∞ 6 ∞ 0

















D(3) =

















0 ∞ 11 2 6
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
16 ∞ 6 18 0

















D(4) =

















0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0

















D(5) =

















0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0
















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Finding the actual shortest paths

In both of these algorithms we have not

addressed the question of actually finding the

paths themselves.

For the Floyd-Warshall algorithm this is

achieved by constructing a further sequence of

arrays P (k) whose (i, j) entry contains a

predecessor of j on the path from i to j. As

the entries are updated the predecessors will

change — if the matrix entry is not changed

then the predecessor does not change, but if

the entry does change, because the path

originally from i to j becomes re-routed

through the vertex k, then the predecessor of j

becomes the predecessor of j on the path from

k to j.
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Summary

1. A graph G is fully described by a set of

vertices V (G) and a set of edges E(G).

2. Graphs may be directed so that the edges

correspond to one directional arcs:

(u, v) ∈ E(G) #⇒ (v, u) ∈ E(G)

3. Graphs may be weighted when an

additional weight value is associated with

each edge: w : E(G) → R.

4. Graphs may be represented as adjacency

list or adjacency matrix data structures.

5. Searching may occur breadth first (BFS) or

depth first (DFS).

6. DFS and BFS create a spanning tree from

any graph.
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Summary (contd)

7. DFS visits the vertices nearest to the

source first. It can be used to determine

whether a graph is connected.

8. BFS visits the vertices furtherest to the

source first. It can be used to perform a

topological sort.

9. Kruskal’s and Prim’s methods are two

greedy algorithms for determining the

minimum spanning tree of a graph.

10. Dijkstra’s method determines the shortest

path between any two vertices in a directed

graph so long as all the weights are

non-negative.

11. When directed graphs have negative edge

weights the Bellman-Ford algorithm may

be used (but it will fail if the graph has a

negative cycle).
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Summary (contd)

12. Dynamic Programming is a general

approach for solving problems which can be

decomposed into sub-problems and where

solutions to sub-problems can be combined

to solve the main problem.

13. Dynamic Programming can be used to

solve the shortest path problem directly or

via the Floyd-Warshall formulation.

14. The minimum path problem can be used

for motion planning of robots through large

graphs using a priority first search.

Recommended reading:

CLRS, Chapters 22–25
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CITS3210 Algorithms

Network Flow

Notes by CSSE, Comics by xkcd.com

1

Flow networks

In this section we see how our fundamental

graph theoretic algorithms can be combined to

solve a more complex problem.

A flow network is a directed graph in which

each directed edge (u, v) has a non-negative

capacity c (u, v) ≥ 0. The flow network has two

special vertices — a source s and a sink t.
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A flow

A flow in a flow network is a function

f : V × V → R

that satisfies the following properties.

Capacity constraint

For each edge (u, v)

f(u, v) ≤ c (u, v)

Skew symmetry

For each pair of vertices u, v

f(u, v) = −f(v, u)

Flow conservation

For all vertices u ∈ V − {s, t} we have

∑

v∈V

f(u, v) = 0

3

The MAX FLOW problem

MAX FLOW

Instance. A flow network G with source s and

sink t.

Question. What is the maximum flow from s

to t?

The most convenient mental model for the

network flow problem is to think of the edges

of the capacity graph as representing pipelines

of various capacities.

The source is to be viewed as a producer of

some sort of fluid (maybe an oil well), and the

sink as a consumer of some sort of fluid

(maybe an oil refinery).

The network flow problem is then the problem

of deciding how much of the fluid to route

along each of the pipelines in order to achieve

the maximum flow of fluid from the source to

the sink.

4



An example flow

This diagram shows a flow in the above flow

network. Each edge is labelled with the

amount of flow passing along that edge.
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The value of a flow f is defined to be the total

flow leaving the source vertex

|f | =
∑

v∈V

f(s, v)

This flow has value 4.
5

Interpreting negative flows

The concept of a negative flow often appears

to be a little confusing.

However it is fundamentally no more difficult

than the concept of an overdraft at a bank

being a negative balance.

If there are 3 units of flow moving from A to

B, then we can equally view that as being −3

units of flow from B to A. This is the concept

that is being captured by skew-symmetry.

If we increase the flow from A to B by one unit

then the new flow will be 4 units from A to B

(same as −4 units from B to A), whereas if we

increase the flow from B to A by one unit then

the new flow will be −2 units from B to A

(same as 2 units from A to B).

6

The residual network

Consider the same flow, but this time also

including the (original) capacities of the edges

on the same diagram.
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It is clear that some of the pipes have got

some residual capacity in that they are not

being fully used.

7

The residual network

The residual network is the network where we

just list the “unused capacities” of the pipes.

Given a capacity graph G and a flow f the

residual network is called Gf where Gf has the

same vertex set as G and capacities cf(u, v)

given by

cf(u, v) = c (u, v) − f(u, v)
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Augmenting flows

If we can find a flow f ′ in the residual network

Gf , then we can form a new flow f∗ in the

original network G where

f∗(u, v) = f(u, v) + f ′(u, v)

Such a flow in the residual network is called an

augmenting flow.
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The total flow so far

Adding this flow to the original flow gives us a

new flow with a higher value — the new flow

has a value of 7.
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10

The new residual network
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We see that the pipes into t now have no

unused capacity — they are currently

saturated. Therefore we cannot increase this

flow any further by finding an augmenting flow.

The question is: have we found the maximum

flow, or did we go wrong at an earlier stage?
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Ford-Fulkerson method

The Ford-Fulkerson method is an iterative

method for solving the maximum flow problem.

It proceeds by starting with the zero valued

flow (where f(u, v) = 0 for all u, v ∈ V ).

At each stage in the method an augmenting

path is found — that is, a path from s to t

along which we may push some additional flow.

Given an augmenting path the bottleneck

capacity b is the smallest residual capacity of

the edges along the path.

We can construct a flow of value b in the

residual network by taking flows of b along the

edges of the path, and zeros elsewhere.

This process continues until there are no

augmenting paths left.

12



For a given flow network G = (V, E), a source

vertex s and a sink vertex t, Ford-Fulkerson

method can be summarised as follows:

Ford-Fulkerson(G, s, t)

for each edge (u, v) ∈ E do

f(u, v) ← 0

f(v, u) ← 0

while there exists a path p from s to t

in the residual network Gf do

cf(p) ← min{cf(u, v) : (u, v) is in p}

for each edge (u, v) in p do

f(u, v) ← f(u, v) + cf(p)

f(v, u) ← −f(u, v)

13

Cuts

An s,t-cut is a partition of V into two subsets

S and T such that s ∈ S and t ∈ T .
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Here the vertices marked S are in S and the

ones marked T are in T . The line draws the

boundary between S and T .
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The capacity of a cut

The capacity of a cut is the sum of the
capacities of all of the edges that go between
S and T .

More formally

c (S, T) =
∑

u∈S,v∈T

c (u, v)
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Therefore the capacity of this cut is

3 + 2 + 5 + 6 = 16

15

Flow across a cut

Now let us compute the flow across this cut

when the network is carrying the flow of value

7 that we found earlier.
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The flow across the cut is

2 + 1 + 3 + 1 = 7

16



Flow across another cut

Now let us compute the flow across a different

cut.
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The flow across this cut is

3 + 3 + 1 = 7

17

Flow across all cuts

Theorem. The flow across every cut has the

same value.

In order to prove this theorem our strategy will

be to show that moving a single vertex from

one side of a cut to the other does not affect

the flow across that cut.

This will then show that any two cuts have the

same flow across them because we can shift

any number of vertices from one side of the

cut to the other without affecting the flow

across the cut.

Proof. Suppose S, T is a cut such that u ∈ S.

We show that we can move u to T without

altering the flow across the cut by considering

the value

f(S, T) − f(S − {u}, T + {u})

18

Proof continued

The contribution that vertex u makes to the

flow f(S, T) is

∑

w∈T

f(u, w)

whereas the contribution it makes to the flow

f(S − {u}, T + {u}) is

∑

w∈S

f(w, u)

Therefore

f(S, T) − f(S − {u}, T + {u})

=
∑

w∈T

f(u, w) −
∑

w∈S

f(w, u)

=
∑

w∈T

f(u, w) +
∑

w∈S

f(u, w)

=
∑

w∈V

f(u, w)

= 0

19

Minimum cut

For any s, t-cut S, T it is clear that

f(S, T) ≤ c (S, T)

Therefore the value of the flow is at most the

capacity of the cut. Therefore we can consider

the cut with the lowest possible capacity —

the minimum cut, and it is clear that the

capacity of this cut is an upper bound for the

maximum flow.

Therefore

max flow ≤ min cut

Example

For our example, the cut S = V − {t}, T = {t}

has capacity 7, so the maximum flow has value

at most 7. (As we have already found a flow of

value 7 we can be sure that this is indeed the

maximum).

20



Max-flow min-cut theorem

The important max-flow min-cut theorem tells

us that the inequality of the previous slide is

actually an equality.

Theorem

If f is a flow in the flow network G with source

s and sink t, then the following three

conditions are equivalent.

1. f is a maximum flow in G

2. The residual network Gf contains no

augmenting paths from s to t

3. |f | = c (S, T) for some s,t-cut S, T

The max-flow min-cut theorem is an instance

of duality that is used in linear optimization

21

Justification

Condition (1) implies Condition (2)

If f is a maximum flow then clearly we cannot

find any augmenting paths.

Condition (2) implies Condition (3)

If the residual network contains no paths from

s to t, then let S be all the vertices reachable

from s, and let T be the remaining vertices.

There are no edges in Gf from S to T and

hence all of these edges are saturated and

f(S, T) = c (S, T).

Condition (3) implies Condition (1)

Obvious.

22

Finding the minimum cut

Let us find the minimum cut in our previous

example.
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Ford-Fulkerson is correct

The main significance of the max-flow min-cut

theorem is that it tells us that if our current

flow is not the maximum flow, then we are

guaranteed that there will be an augmenting

path.

This means that the Ford-Fulkerson method is

always guaranteed to find a maximum flow,

regardless of how we choose augmenting paths.

However it is possible to make unfortunate

choices of augmenting paths in such a way that

the algorithm may take an inordinate amount

of time to finish, and indeed examples can be

constructed so that if a bad augmenting path

is chosen the algorithm will never finish.
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Complexity of Ford-Fulkerson

If the capacities of the edges are all integers,

then at each step the algorithm augments the

flow by at least 1 unit. Finding each

augmenting path can be done in time O(E)

(where E is the number of edges of the original

network that have non-zero capacity).

Therefore the complexity is O(E|f∗|) where |f∗|

is the value of the maximum flow.

It is easy to construct examples where it would

actually take this long.
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Improving the performance

Edmonds and Karp suggested two heuristics

for improving the performance of the algorithm

by choosing better augmenting paths.

Their first heuristic seems natural enough:

• Always augment by a path of maximum

bottleneck capacity

The path of maximum bottleneck capacity can

be found by a priority-first search — similar to

Dijkstra’s algorithm except that the priority is

based on the bottleneck capacity of the path

so far, rather than distances.

This can be implemented in time O(E ln |f∗|),

but we will not consider the derivation of this

bound.

26

The second heuristic

Edmonds and Karp’s second heuristic produces

an asymptotic complexity which is independent

of the edge capacities.

• Always augment by a path with the fewest

number of edges

Suppose we perform a breadth-first search on

the residual network G to find the shortest

path p from s to t. After augmenting the flow

along p by the bottleneck capacity, consider

the new residual network G′. The shortest path

from s to t in G′ must be at least as long as

that in G, because any new edges in G′ that

are not in G must point back along the path p,

and hence cannot contribute to a shorter path.

This shows that the lengths of the shortest

paths found at each stage is always constant or

increasing.

27

Analysis

We can view the Edmonds-Karp heuristic as

operating in several “stages” where each stage

deals with all the augmenting paths of a given

length.

How many augmenting paths of a given length

can there be?

There can be at most E augmenting paths of

a given length, and if performed efficiently,

each augmentation can be done in time E.

As there are at most V stages of the algorithm

we get a total time of O(V E2).
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Applications of network flow

One interesting application of network flow is

to solve the bipartite matching problem.

A matching in a graph G is a set of edges that

do not share any vertices.

The maximum matching problem is to find the

largest possible matching in a graph.

Although the problem can be solved in

polynomial time, the algorithm required to

solve it in the general case (when G can be any

graph) is horrendously complicated.

The situation is much simpler for a bipartite

graph, where network flow can directly be used.

Matchings for bipartite graphs can be

considered to be simple versions of the stable

marriage problem.

29

Bipartite graph

A bipartite graph is an undirected graph

G = (V, E) in which V can be partitioned into

two sets V1 and V2 such that (u, v) ∈ E implies

either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.

That is, all edges go between the two sets V1

and V2.

Example of a bipartite graph

V
1

V
2

A

B

C

D

E

F

G

H

I

(Vertices in V1

may represent a

number

of machines and

vertices in V2

may represent a

number of

tasks.)
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Finding a maximum bipartite matching

using Ford-Fulkerson method

V
1

V
2

A

B

C

D

E

F

G

H

I

s t

(Assume all edge capacities are 1).

Recommended reading: CLRS, Chapter 26
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The stable marriage problem

The stable marriage problem is not a network

flow problem, but it is a matching problem.

The scenario is as follows:

We are given two sets, VM and VF (male and

female) of the same size. Also, every man

v ∈ Vm ranks every woman u ∈ VF and every

woman u ∈ VF ranks every man in VM .

We will write u <v u′ if v would rather marry u

than u′.

The stable marriage problem is to find a

matching E ⊂ VM × VF such that if (v, u) and

(w, z) are in E, then either u <v z or w <z v.
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Solution

The Gale-Shapley algorithm is a solution to the

stable marriage problem that involves a

number of rounds. Heuristically, each round

every “unengaged” man proposes to his most

preferred woman that he has not already

proposed to. If this woman is unengaged or

engaged to someone she prefers less than her

new suitor, she breaks off her current

engagement and accepts the new proposal.

These iterations continue until everybody is

engaged. It can be shown that at this point we

have a solution to the stable marriage problem.

33

Pseudo-Code

Let P be a listing of everybody’s preferences.

procedure StableMarriage(VM, VF , P)

E ← ∅

while |E| < n

for each v ∈ VM where ∀u, (v, u) /∈ E

u ← v’s next preference

if (w, u) ∈ E and v <u w

E ← E − {(w, u)} ∪ {(v, u)}

else if ∀w, (w, u) /∈ E

E ← E ∪ {(v, u)}

return E

34

Summary

1. A flow network is a directed, weighted

graph with a source and a sink

2. A flow assigns a real value to each edge in

the flow network and satisfies the capacity

constraint, skew symmetry and flow

conservation.

3. The Ford Fulkerson method solves the

maximum flow problem by iteratively search

for augmenting paths in the residual flow

network.

4. A cut is a set of edges that divides the

source form the sink.
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Summary cont.

5. the Max-flow min-cut theorem states that

the maximum flow for the source to the

sink is equal to the minimum flow across all

cuts.

6. Edmonds’ and Karp’s Heuristics improve

the performance of the Ford-Fulkerson

method.

7. Flow networks can be used to solve some

simple matching problems in Bipartite

graphs.

8. The Gale-Shapely algorithm can be used to

solve the stable marriage matching

problem.
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Computational Geometry

Notes by CSSE, Comics by xkcd.com

1

Computational Geometry

Computational Geometry is the study of

algorithms for solving geometric problems.

This has applications in many areas such as

graphics, robotic, molecular modelling, forestry,

statistics, meteorology,... basically any field

that stores data as a set of points in space.

In this topic we will restrict our attention to

geometric problems in the 2 dimensional plane.

2

Geometric Objects

The types of objects we will use are:

• Points: a point (x, y) is represented using

two Cartesian coordinates: x, y ∈ R. The

origin (0,0) is point.

• Lines: line p = (p1, p2) is represented by

two points p1 "= p2 which represent the two

end points of a line. Sometimes we may

represent a line using only one point, with

the understanding that second point is the

origin.

• Vectors: A vector !v = (v1, v2) is a

direction. A vector v and a point (x, y) may

represent the (directed) line segment

(x, y), (x + v1, y + v2).

• Polygons: A polygon is a closed shape

made up of straight edges (e1, e2, ..., ek)

where ei is a line for i = 1, ..., k and the

start point of e1 is the end point of ek.

3

Geometric Objects

polygon

Line

vector

point

4



Geometric Problems

Given these basic structures we may be

interested in:

• whether a point is on a line?

• how close is a point to a line?

• whether two lines intersect?

• where do two lines intersect?

• whether a point is inside a polygon?

• what is the area of a polygon?

• what is the smallest polygon that contains

a number of points?

5

Is this point on a line?

Do these two lines intersect?

6

Is this point inside the polygon?

Do any of these lines intersect?

7

The problem with geometry

The difficulty with geometric algorithms is that

the “Human” approach is so different to the

algorithmic approach. As humans we are able

to represent the geometric objects in a 2

dimensional plane, and a single glance at that

plane is enough to determine whether or not a

point is on a line, or in a polygon.

However there is no algorithmic variation of a

“glance”, so we are required to look for a

mathematical approach to solving these

problems.

It turns out that surprisingly little mathematics

is required for the algorithms we will be using,

although some basic linear algebra is assumed.

(You should know how to add and subtract

points in the plane, perform scalar

multiplication, calculate Euclidean distances

and solve systems of linear equations).

8



The Cross-Product

In fact the geometric mathematics in the

problems we have mentioned can generally be

reduced to the question:

With respect to point A, is point B to

the left or right of point C?

Suppose p1 = (x1, y1) and p2 = (x2, y2) are two

vectors (i.e. lines that start at the origin and

end at the given point). The cross product of

these two vectors is the (3D) vector that is

perpendicular to both vectors, and has

magnitude

p1 × p2 = x1y2 − x2y1

which in turn is equal to the signed area of the

parallelogram with edges p1 and p2.

p1

p2

9

Simplifying the cross product

The mathematical definition and properties of

the cross product are all very interesting, but

the only thing we need to worry about is the

sign of p1 × p2: if it is positive, then p1 is to

the right of p2; if it is 0, p1 and p2 are on the

same line; and if it is negative p1 is to the left

of p2 (all with respect to the origin).

To this end, let’s define a function for the

direction of an angle

Dir(p0,p1, p2) = (p1 − p0) × (p2 − p0)

The only thing you need to be careful of is

that you get the order of the points right.

10

The right hand rule

(Which version of the rule you use isn’t

important as long as it is applied consistently).

11

Using the Cross-Product

The first question we can answer is whether a

point, p0, is on a line, (p1, p2).

procedure OnLine(p0, p1, p2)

if Dir(p0, p1, p2) = 0

if p1.x ≤ p0.x ≤ p2.x

return true

else if p2.x ≤ p0.x ≤ p1.x

return true

else return false

else return false

p0

p2

p1

p0

>0

<0

You should always check the specification

carefully to see if the end-points of a segment

should be included. There are similar boundary

conditions for most of the following algorithms.

12



Closest point on a line

A more general version of the problem above is

what is the closest point on a line segment to

a given point. This can be solved in a number

of ways, including binary search, or using

trigonometry. The following solution makes

use of some very basic calculus to determine

the closest point on the line (p1, p2) to the

point p0.

procedure ClosestPoint(p0, p1, p2)

a ← p2.x − p1.x, b ← p2.y − p1.y

t ← (a(p0.x − p1.x) + b(p0.y − p1.y))/(a2 + b2)

if t > 1

return p2

else if t < 0

return p1

else

return ((p1.x + ta), (p1.y + tb)

13

Diagram

t

p0

p1

p2

14

Dot products

A related concept is the dot product of two

vectors v = (x1, y1) and u = (x2, y2), which is

calculated as x1x2 + y1y2.

The dot product is the length of the vector v

when it is projected orthogonally onto the

vector u multiplied by the length of u (or vice

versa).

u.v/ |v|

u

v

It is useful to know, but be careful not to

confuse it with the cross product.

15

Intersecting Lines

The next question we can answer is whether

two lines, (p0, p1) and (p2, p3) intersect. (To

simplify the code we will suppose intersect

means the lines cross properly, rather than

touch at an end-point, and the endpoints of

each line are sorted lexicographically).

procedure Crosses(p0, p1, p2, p3)

d ← Dir(p0, p1, p2)× Dir(p0, p1, p3)

if d < 0

return true

else return false

Crosses is true if both p2 and p3 are not both

on the same side of (p0, p1). However this is

not enough to decide whether the lines

intersect.

p1

p0

p2

p3

16



Intersecting Line Segments

Crosses(p, q) actually returns if the line

segment q intersects the infinite extension of p.

We can reuse this method the see if the two

segments intersect.

procedure Intersects(p0, p1, p2, p3)

if Crosses(p0, p1, p2, p3)

if Crosses(p2, p3, p0, p1)

return true

else return false

else return false

p3

p0

p1

p2

17

Any Segments Intersect

The methods we have seen so far barely

deserve to be called algorithms. They are

simply achieved through basic arithmetic and

comparisons.

However, as with all things computer, once we

know how to do one thing well we want to

know if we can do it well many times all at

once....

Now suppose we are given a set of lines, and

we would like to know whether any two lines in

the set intersect.

Here we adopt something akin to a human

approach, where we scan all of the points

making up to line segments, inspecting each to

see if there is an intersection.

18

The Sweep Line

To process all the line segments efficiently we

imagine a sweep line passing moving from left

to right.

Every time it the start or the end of a line

segment it triggers an event, where we must

check to see if an intersection has occured.

As the sweep line progresses from left to right,

we are required to maintain an ordered list of

the line segments that cross the sweep line,

ordered from top to bottom (with respect to

their first point).

19

The sweep line

<d,e,f,g>

a

b

c

d

e

f

g

h

20



Events

There are two types of events we must

consider: when we encounter the first point of

a line segment, and when we encounter the

second point of a line segment:

• When we encounter the first point of a line

segment, we insert the line segment into

our ordered list of line segments. When we

do this we should check to see if the new

line segment intersects the line segment

directly above it or below it in the list.

• When we encouter the end point of a line

segment, we remove the segment from the

ordered list. This will cause the line

segment above and below the removed

segment to become adjacent, so we must

check if they intersect.

21

Pseudo-code

Suppose that S = {s1, s2, ...sn} is a set line

segments, where si = (pi, qi), and let T be an

ordered list.

Sort the set of points {pi, qi | si ∈ S}

for each point r in the sorted list

do if r = pi

then INSERT(T ,si)

if ABOVE(T ,si) exists and intersects si

then return true

if BELOW(T ,si) exists and intersects si

then return true

else if r = qi

then if ABOVE(T ,si) and BELOW(T ,si)

then return true

DELETE(T ,si)

return false

22

Correctness

To see the correctness of this algorithm we

need to show the following three statements:

1. If two line segments si and sj intersect,

there is some event point x, such that at x

si is next to sj in the list (say si and sj are

neighbours).

2. In between event points, the only way new

neighbours may arise is if already

neigbouring line segments intersect.

3. At an event point, the only way new

neighbours may arise is by adding a line

segment (creating up to two new pairs of

neighbours), or by removing a line segment

(creating up to one new pair of

neighbours).

23

Other considerations?

From the previous statements we are able to

conclude the algorithm is correct. However:

• What if lines start and end at the same

sweep line. Does the proof still work?

• What simplifying assumption does this

algorithm make?

• How would you change this algorithm if you

actually needed to return all intersections?

24



Complexity

Assuming there are N line segments there are
2N event-points to deal with.

• These points must be sorted (using, say
heapsort). This takes O(N lgN) time.

• Then, for each point we need to either:

1. insert the corresponding segment into
an ordered list (finding the segments
above and below) O(lgN), and calculate
whether the segments intersect O(1); or

2. find the segments above and below
(O(lgN)), calculate whether they
intersect (O(1)), and delete the segment
from the ordered list (O(lgN)).

This gives overall performance of O(N lgN).

Note that the insertions, deletions and find
operations on the ordered list require an
efficient implementation, such as a Red-Black
tree (java.util.TreeMap) or an AVL tree.

25

Convex Hull

The problem of the convex hull is to find the

smallest convex polygon that contains a set of

points.

A shape is convex if any line segment

between two points inside the shape

remains inside the shape.

The convex hull algorithm we will examine is

known as Graham’s scan. Like the

all-segments intersection algorithm, it is based

on a sweep, but this time it is a roational

sweep, rather than a linear sweep.

The algorithm is based on the fact that you

can walk clockwise round the perimeter of a

convex hull, and every point of the set will

always on your right.

26

The Convex Hull

27

Graham’s Scan

Graham’s scan starts with the (bottom)
left-most point of the set, and processes the
points in order from left to right (with resepct
to that point). The each point is examined
and if there is known point to its left (with
respect to any point examined so far) it is a
candidate for the convex hull. These condidate
points are kept on a stack. As every new point
is examined, either:

1. there is only one point already in the stack
in which case the new point is added.

2. it is to the right of the line segment
through the top two points on the stack, in
which case it is pushed on to the stack; or

3. it is to the left of the line segment through
the top two points on the stack, in which
case the top element of the stack is
popped off, and we repeat the test.

After every point has been processed, the
remaining points on the stack form the convex
hull.
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Graham’s Scan

9

0

1

2

3

4

5

6

7
8
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Pseudo-code

Let P be a set of points {p1, ..., pn} and S be a

stack.

procedure Graham-Scan(P)

Find the left-most point p0 in P

Sort the set of points P − {p0}

according to their angle around p0

for each point p in the sorted list

do if |S| = 1

then PUSH(S,p)

else q1 ← POP(S), q0 ← POP(S)

while DIR(p0,p1, p) ¡0

do q1 ← q0, q0 ← POP(S)

PUSH(S, q0), PUSH(S,q1), PUSH(S,q)

RETURN S.

30

Correctness (sketch)

The algorithm returns a stack of points. If we

list these points in order (wrapping back to the

start vertex) we get the edges of a polygon.

We now must show two things:

1. The polygon is convex: This follows from

the fact that the algorithm ensures that

each corner of the polygon turns right (for

a clockwise direction).

2. The polygon contains every point in P :

Every point p is added to S, and points are

only removed if we find an edge p1p2 such

that the triangle p0p1p2 contains p. As

p0, p1, p2 will then appear in the stack, p

will be contained in the polygon.

31

Complexity

We can find the left-most point in time O(n).

We can sort the points according to their angle

around p0 in time O(n lgn). Note we do not

have to calculate the angle to do this. We can

just do a normal sort, but instead of using <

for comparison, we can use the DIR function.

The algorithm then has two nest loops each

potentially going through n iterations.

However, we may note that the inner loop is

popping elements of the stack. As each

element is added to the stack exactly once,

this operation cannot be performed more than

n times.

Therefore the total complexity is O(n lgn)
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Closest pair of points

Finding the closest pair of points in a set of

points is another useful algorithm that

demonstrates a useful technique for

computational geometry - divide and conquer.

The problem assumes we are given a set of

points P , and we are required to return the two

points tat are closest to one another with

respect to Euclidean distance.

The idea of the algorithm is to split the set of

points P into two halves, PL and PR. We can

then recursively solve the problem for the two

halves and then combine the solution (take the

minimum pairing). But what is there is one

point in PL and one point in PR that are closer

to one another? We need a way to quickly

check if there are any closer pairs crossing the

partition.

33

Closest pair of points

Pr

d

d d

Pl

34

Checking Points Across Partitions

If we have solved the Closest Pair of Points

problem for PL and PR then we know the

minimum distance betwwen any pair of points

in eitehr partition. Let this distance be δ.

Therefore, we only need to check if points

within a δ-width strip on either side of the

divide are closer.

Furthermore, we know all the points in either

side of the 2δ-width strip must be at least a

distance of δ from one another. We can use

this fact to show that each point in the strip

only needs to be compared to the 5 subsequent

points (ordered from top to bottom).

35

Pseudo-code

Let P = {p1, ..., pn} be a set of points. We will

just give the method for finding the closest

distance. We will assume that P is sorted by

x-coordinate, and also that we have access to

a copy of P , Q, that is sorted by y-coordinate

(with an inverse index).

procedure ClosestPair(P)

Split P into PL (the n/2 leftmost points)

and PR (the other points)

δ = min{ClosestPair(PL), ClosestPair(PR)}

For each point p in P

if px is within δ of px
n/2

then add p to A

For each point qi in A in order of qy
i

For j = 1, ...,5

δ = min{δ, DIST(qi, qi+j}

RETURN δ
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Analysis

The divide and conquer strategy is easily seen

to be valid, however the algorithm descibed

above uses a number of optimizations, such as

presorting and examining a relatively small set

of pairs of points. See CLRS chapter 33 for a

justification of these optimizations.

The complexity of O(n lgn) can be shown

using the recurrence:

T(n) = 2T(n/2) + O(n)

(see for example merge-sort). What

optimizations do we require to ensure that the

divide and merge can be performed in time

O(n)?

37

Point inside a polygon

Suppose we are given a polygon (as a set of

points P = (p0, p1, ...pn) where p0 = pn) and we

are required to determine whether a point q is

inside the polygon or not.

This algorithm is relatively simple. We take a

line segment starting at q and ending at a

point we know to be outside the polygon.

Then we count the number of times the line

segment crosses an edge of the polygon. As

every time it crosses an edge, the line segment

goes from insdie the polygon to outside, or

from outside the polygon to inside. Therefore

if there are an odd number of such crossings,

the pointis inside, otherwise it is outside.

38

Ray casting

5

1 2

3

4
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Pseudo-code

Given a simple polygon P = (p0, p1, ..., pn)

where p0 = pn and a point q we determine

whether q is in P as follows:

procedure Pt-In-Poly(P , q)

Find a point r outside the polygon

e.g. ((minX) − 1,0)

set c ← 0

for i = 1 to n

do if Intersects(r, q, pi−1, pi)

then c ← c + 1

if c is even return false

else return true.

You should be careful how the Intersect

methods treats lines touching at a point, or

interval.The intersects method provided in

these notes requires that the lines properly

cross, but it still requires a careful treatment in

the rare case that the ray passes through the

corner of a polygon appropriate in this context.

This special case, along with correctness and

completeness are left as excercises.
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Area of a polygon

We will assume that we are given a polygon P

that is not self intersecting, and furthermore

we shall suppose that the polygon is

represented by a sequence of points

{p0, p1, ..., pn} where (pi, pi+1) are the edges in

clockwise order, and p0 = pn.

The area of a polygon can be computed by

breaking it up into a series of triangles. The

area may then be computed by calculated by

computing the sum:

1

2
Σn

0(xi+1yi − xiyi+1)

The derivation follows from the

characterisation of the cross-product as the

area of the parallelogram created by the

adjacent vectors.

41

A final note

We can see computational geometry has as

much in common with graph algorithms as it

does with maths. However, a main point of

difference is to number of boundary cases to

consider:

Always check:

1. Can you rearrange a sum to reduce round

off error?

2. Do you really need to do (real valued)

division?

3. Have you considered all boundary cases:

points touching, co-linear points, 0-area

polygons?

4. What degree of accuracy is required?

42

Summary

We have examined:

• 2D Geometric objects.

• Cross-products, dot products and the right

hand rule.

• Closest point to a line, intersecting line

segments.

• Sweep lines:

– All intersecting segments.

– Convex hull.

• Divide and Conquer: closest pair of points.

• Ray casting: Point inside a polygon.

• Useful functions: Area of a polygon
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1

Overview

In this topic we will look at pattern-matching

algorithms for strings. Particularly, we will look

at the Rabin-Karp algorithm, the

Knuth-Morris-Pratt algorithm, and the

Boyer-Moore algorithm.

We will also consider a dynamic programming

solution to the Longest Common Substring

problem.

Finally we will examine some file compression

algorithms, including Huffman coding, and the

Ziv Lempel algorithms.

2

Pattern Matching

We consider the following problem. Suppose T

is a string of length n over a finite alphabet Σ,

and that P is a string of length m over Σ.

The pattern-matching problem is to find

occurrences of P within T . Analysis of the

problem varies according to whether we are

searching for all occurrences of P or just the

first occurrence of P .

For example, suppose that we have

Σ = {a, b, c} and

T = abaaabacccaabbaccaababacaababaac

P = aab

Our aim is to find all the substrings of the text

that are equal to aab.

3

Matches

String-matching clearly has many important

applications — text editing programs being

only the most obvious of these. Other

applications include searching for patterns in

DNA sequences or searching for particular

patterns in bit-mapped images.

We can describe a match by giving the number

of characters s that the pattern must be

shifted along the text in order for every

character in the shifted pattern match the

corresponding text characters. We call this

number a valid shift.

abaaabacccaabbaccaababacaababaac

aab

aab

aab

aab

aab

Here we see that s = 3 is a valid shift.

4



The naive method

The naive pattern matcher simply considers

every possible shift s in turn, using a simple

loop to check if the shift is valid.

When s = 0 we have

abaaabacccaabbaccaababacaababaac

aab

which fails at the second character of the

pattern.

When s = 1 we have

abaaabacccaabbaccaababacaababaac

aab

which fails at the first character of the pattern.

Eventually this will succeed when s = 3.

5

Analysis of the naive method

In the worst case, we might have to examine

each of the m characters of the pattern at

every candidate shift.

The number of possible shifts is n − m + 1 so

the worst case takes

m(n − m + 1)

comparisons.

The naive string matcher is inefficient because

when it checks the shift s it makes no use of

any information that might have been found

earlier (when checking previous shifts).

For example if we have

000000001000001000000010000000

000000001

then it is clear that no shift s ≤ 9 can possibly

work.
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Rabin-Karp algorithm

The naive algorithm basically consists of two

nested loops — the outermost loop runs

through all the n − m + 1 possible shifts, and

for each such shift the innermost loop runs

through the m characters seeing if they match.

Rabin and Karp propose a modified algorithm

that tries to replace the innermost loop with a

single comparison as often as possible.

Consider the following example, with alphabet

being decimal digits.

122938491281760821308176283101

176

Suppose now that we have computer words

that can store decimal numbers of size less

than 1000 in one word (and hence compare

such numbers in one operation).

Then we can view the entire pattern as a

single decimal number and the substrings of

the text of length m as single numbers.
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Rabin-Karp continued

Thus to try the shift s = 0, instead of

comparing

1 − 7 − 6

against

1 − 2 − 2

character by character, we simply do one

operation comparing 176 against 122.

It takes time O(m) to compute the value 176

from the string of characters in the pattern P .

However it is possible to compute all the

n − m + 1 decimal values from the text just in

time O(n), because it takes a constant number

of operations to get the “next” value from the

previous.

To go from 122 to 229 only requires dropping

the 1, multiplying by 10 and adding the 9.
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Rabin-Karp formalized

Being a bit more formal, let P [1..m] be an

array holding the pattern and T [1..n] be an

array holding the text.

We define the values

p = P [m] + 10P [m − 1] + · · · + 10m−1P [1]

ts = T [s+m]+10T [s+m−1]+· · ·+10m−1T [s+1]

Then clearly the pattern matches the text with

shift s if and only if ts = p.

The value ts+1 can be calculated from ts easily

by the operation

ts+1 = 10(ts − 10m−1T [s + 1]) + T [s + m + 1]

If the alphabet is not decimal, but in fact has

size d, then we can simply regard the values as

d−ary integers and proceed as before.
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But what if the pattern is long?

This algorithm works well, but under the

unreasonable restriction that m is sufficiently

small that the values p and {ts | 0 ≤ s ≤ n − m}

all fit into a single word.

To make this algorithm practical Rabin and

Karp suggested using one-word values related

to p and ts and comparing these instead. They

suggested using the values

p′ = p mod q

and

t′s = ts mod q

where q is some large prime number but still

sufficiently small that dq fits into one word.

Again it is easy to see that t′s+1 can be

computed from t′s in constant time.
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The whole algorithm

If t′s $= p′ then the shift s is definitely not valid,

and can thus be rejected with only one

comparison. If t′s = p′ then either ts = p and

the shift s is valid, or ts $= p and we have a

spurious hit.

The entire algorithm is thus:

Compute p′ and t′0
for s ← 0 to n − m do

if p′ = t′s then

if T [s + 1..s + m] = P [1..m] then

output “shift s is valid”

end if

end if

Compute t′s+1 from t′s
end for

The worst case time complexity is the same as

for the naive algorithm, but in practice where

there are few matches, the algorithm runs

quickly.
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Example

Suppose we have the following text and pattern

5 4 1 4 2 1 3 5 6 2 1 4 1 4
4 1 4

Suppose we use the modulus q = 13, then

p′ = 414 mod 13 = 11.

What are the values t′0, t′1, etc associated with

the text?

5 4 1︸ ︷︷ ︸ 4 2 1 3 5 6 2 1 4 1 4
t′0 = 8

5 4 1 4︸ ︷︷ ︸ 2 1 3 5 6 2 1 4 1 4
t′1 = 11

This is a genuine hit, so s = 1 is a valid shift.

5 4 1 4 2︸ ︷︷ ︸ 1 3 5 6 2 1 4 1 4
t′2 = 12

We get one spurious hit in this search:

5 4 1 4 2 1 3 5 6 2 1 4 1︸ ︷︷ ︸ 4
t′10 = 11

12



Finite automata

Recall that a finite automaton M is a 5-tuple

(Q, q0, A,Σ, δ) where

• Q is a finite set of states

• q0 ∈ Q is the start state

• A ⊆ Q is a distinguished set of accepting

states

• Σ is a finite input alphabet

• δ : Q × Σ → Q is a function called the

transition function

Initially the finite automaton is in the start

state q0. It reads characters from the input

string x one at a time, and changes states

according to the transition function. Whenever

the current state is in A, the set of accepting

states, we say that M has accepted the string

read so far.
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A finite automaton

Consider the following 4-state automaton:

Q = {q0, q1, q2, q3}

A = {q3}

Σ = {0,1}

δ is given by the following table

q 0 1

q0 q0 q1
q1 q0 q3
q2 q0 q3
q3 q0 q0

q0 q1

q2 q3

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

"! "!

!
"

"
!

"
!

0

1

1

0

1
01

!
""!

0
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A string matching automaton

We shall devise a string matching automaton

such that M accepts any string that ends with

the pattern P . Then we can run the text T

through the automaton, recording every time

the machine enters an accepting state, thereby

determining every occurrence of P within T .

To see how we should devise the string

matching automaton, let us consider the naive

algorithm at some stage of its operation, when

trying to find the pattern abbabaa.

a b b a b b a b a a
a b b a b a a

Suppose we are maintaining a counter

indicating how many pattern characters have

matched so far — this shift s fails at the 6th

character. Although the naive algorithm would

suggest trying the shift s + 1 we should really

try the shift s + 3 next.

a b b a b b a b a a
a b b a b a a
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Skipping invalid shifts

The reason that we can immediately eliminate

the shift s + 1 is that we have already

examined the following characters (while trying

the shift s)

a b b a b b︸ ︷︷ ︸ a b a a

and it is immediate that the pattern does not

start like this, and hence this shift is invalid.

To determine the smallest shift that is

consistent with the characters examined so far

we need to know the answer to the question:

“What is the longest suffix of this string that is

also a prefix of the pattern P?”

In this instance we see that the last 3

characters of this string match the first 3 of

the pattern, so the next feasible shift is

s + 6 − 3 = s + 3.

16



The states

For a pattern P of length m we devise a string

matching automaton as follows:

The states will be

Q = {0,1, . . . , m}

where the state i corresponds to Pi, the

leading substring of P of length i.

The start state q0 = 0 and the only accepting

state is m.

0 1 2 3 4 5 6 7
a b b a b a a

!
"

!
"

!
"

!
"

!
"

!
"

!
"

This is only a partially specified automaton,

but it is clear that it will accept the pattern P .

We will specify the remainder of the

automaton so that it is in state i if the last i

characters read match the first i characters of

the pattern.
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The transition function

Now suppose, for example, that the automaton

is given the string

a b b a b b · · ·

The first five characters match the pattern, so

the automaton moves from state 0, to 1, to 2,

to 3, to 4 and then 5. After receiving the sixth

character b which does not match the pattern,

what state should the automaton enter?

As we observed earlier, the longest suffix of this

string that is a prefix of the pattern abbabaa

has length 3, so we should move to state 3,

indicating that only the last 3 characters read

match the beginning of the pattern.
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The entire automaton

We can express this more formally:

If the machine is in state q and receives a

character c, then the next state should be q′

where q′ is the largest number such that Pq′ is

a suffix of Pqc.

Applying this rule we get the following finite

state automaton to match the string abbabaa.

0 1 2 3 4 5 6 7
a b b a b a a

! "
! "

! "

#$ #$
% &

% &
% &

! "

bbaab

a b

b

a

By convention here all the horizontal edges are

pointing to the right, while all the curved line

segments are pointing to the left.

19

Using the automaton

The automaton has the following transition

function:

q a b

0 1 0
1 1 2
2 1 3
3 4 0
4 1 5
5 6 3
6 7 2
7 1 2

Use it on the following string

ababbbabbabaabbabaabaaabababbabaabbabbaa

Character a b a b b b a b b a b
Old state 0 1 2 1 2 3 0 1 2 3 4
New state 1 2 1 2 3 0 1 2 3 4 5

Compressing this information:

ababbbabbabaabbabaabaaabababbabaabbabbaa

1212301234567234567211121212345672345341
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Analysis and implementation

Given a pattern P we must first compute the

transition function. Once this is computed the

time taken to find all occurrences of the

pattern in a text of length n is just O(n) —

each character is examined precisely once, and

no “backing-up” in the text is required. This

makes it particularly suitable when the text

must be read in from disk or tape and cannot

be totally stored in an array.

The time taken to compute the transition

function depends on the size of the alphabet,

but can be reduced to O(m|Σ|), by a clever

implementation.

Therefore the total time taken by the program

is O(n + m|Σ|)

Recommended reading: CLRS, Chapter 32,

pages 906–922
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Regular expressions
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Knuth-Morris-Pratt

The Knuth-Morris-Pratt algorithm is a

variation on the string matching automaton

that works in a very similar fashion, but

eliminates the need to compute the entire

transition function.

In the string matching automaton, for any

state the transition function gives |Σ| possible

destinations—one for each of the |Σ| possible

characters that may be read next.

The KMP algorithm replaces this by just two

possible destinations — depending only on

whether the next character matches the

pattern or does not match the pattern.

As we already know that the action for a

matching character is to move from state q to

q + 1, we only need to store the state changes

required for a non-matching character. This

takes just one array of length m, and we shall

see that it can be computed in time O(m).
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The prefix function

Let us return to our example where we are

matching the pattern abbabaa.

Suppose as before that we are matching this

against some text and that we detect a

mismatch on the sixth character.

a b b a b x y z
a b b a b a a

In the string-matching automaton we used

information about what the actual value of x

was, and moved to the appropriate state.

In KMP we do exactly the same thing except

that we do not use the information about the

value of x — except that it does not match

the pattern. So in this case we simply consider

how far along the pattern we could be after

reading abbab — in this case if we are not at

position 5 the next best option is that we are

at position 2.
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The KMP algorithm

The prefix function π then depends entirely on

the pattern and is defined as follows: π(q) is

the largest k < q such that Pk is a suffix of Pq.

The KMP algorithm then proceeds simply:

q ← 0

for i from 1 to n do

while q > 0 and T [i] "= P [q + 1]

q ← π(q)

end while

if P [q + 1] = T [i] then

q ← q + 1

end if

if q = m then

output “shift of i − m is valid”

q ← π(q)

end if

end for

This algorithm has nested loops. Why is it

linear rather than quadratic?
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Heuristics

Although the KMP algorithm is asymptotically

linear, and hence best possible, there are

certain heuristics which in some commonly

occurring cases allow us to do better.

These heuristics are particularly effective when

the alphabet is quite large and the pattern

quite long, because they enable us to avoid

even looking at many text characters.

The two heuristics are called the bad character

heuristic and the good suffix heuristic.

The algorithm that incorporates these two

independent heuristics is called the

Boyer-Moore algorithm.
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The algorithm without the heuristics

The algorithm before the heuristics are applied

is simply a version of the naive algorithm, in

which each possible shift s = 0, 1, . . . is tried in

turn.

However when testing a given shift, the

characters in the pattern and text are

compared from right to left. If all the

characters match then we have found a valid

shift.

If a mismatch is found, then the shift s is not

valid, and we try the next possible shift by

setting

s ← s + 1

and starting the testing loop again.

The two heuristics both operate by providing a

number other than 1 by which the current shift

can be incremented without missing any

matches.
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Bad characters

Consider the following situation:

o n c e _ w e _ n o t i c e d _ t h a t

i m b a l a n c e

The two last characters ce match the text but

the i in the text is a bad character.

Now as soon as we detect the bad character i

we know immediately that the next shift must

be at least 6 places or the i will simply not

match.

Notice that advancing the shift by 6 places

means that 6 text characters are not examined

at all.
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The bad character heuristic

The bad-character heuristic involves

precomputing a function

λ : Σ → {0,1, . . . , m}

such that for a character c, λ(c) is the

right-most position in P where c occurs (and 0

if c does not occur in P).

Then if a mismatch is detected when scanning

position j of the pattern (remember we are

going from right-to-left so j goes from m to

1), the bad character heuristic proposes

advancing the shift by the equation:

s ← s + (j − λ(T [s + j]))

Notice that the bad-character heuristic might

occasionally propose altering the shift to the

left, so it cannot be used alone.
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Good suffixes

Consider the following situation:

t h e _ l a t e _ e d i t i o n _ o f

e d i t e d

The characters of the text that do match with

the pattern are called the good suffix. In this

case the good suffix is ed. Any shift of the

pattern cannot be valid unless it matches at

least the good suffix that we have already

found. In this case we must move the pattern

at least 4 spaces in order that the ed at the

beginning of the pattern matches the good

suffix.
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The good-suffix heuristic

The good-suffix heuristic involves

precomputing a function

γ : {1, . . . , m} → {1, . . . , m}

where γ(j) is the smallest positive shift of P so

that it matches with all the characters in

P [j + 1..m] that it still overlaps.

We notice that this condition can always be

vacuously satisfied by taking γ(j) to be m, and

hence γ(j) > 0.

Therefore if a mismatch is detected at

character j in the pattern, the good-suffix

heuristic proposes advancing the shift by

s ← s + γ(j)
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The Boyer-Moore algorithm

The Boyer-Moore algorithm simply involves

taking the larger of the two advances in the

shift proposed by the two heuristics.

Therefore, if a mismatch is detected at

character j of the pattern when examining shift

s, we advance the shift according to:

s ← s + max(γ(j), j − λ(T [s + j]))

The time taken to precompute the two

functions γ and λ can be shown to be O(m)

and O(|Σ| + m) respectively.

Like the naive algorithm the worst case is when

the pattern matches every time, and in this

case it will take just as much time as the naive

algorithm. However this is rarely the case and

in practice the Boyer-Moore algorithm

performs well.
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Example

Consider the pattern:

o n e _ s h o n e _ t h e _ o n e _ p h o n e

What is the last occurrence function λ?

c λ(c) c λ(c) c λ(c) c λ(c)
a 0 h 20 o 21 v 0
b 0 i 0 p 19 w 0
c 0 j 0 q 0 x 0
d 0 k 0 r 0 y 0
e 23 l 0 s 5 z 0
f 0 m 0 t 11 - 0
g 0 n 22 u 0 18
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Example continued

What is γ(22)? This is the smallest shift of P

that will match the 1 character P [23], and this

is 6.

o n e _ s h o n e _ t h e _ o n e _ p h o n e

o n e _ s h o n e _ t h e _ o n e

The smallest shift that matches P [22..23] is

also 6.

o n e _ s h o n e _ t h e _ o n e _ p h o n e

o n e _ s h o n e _ t h e _ o n e

so γ(21) = 6.

The smallest shift that matches P [21..23] is

also 6

o n e _ s h o n e _ t h e _ o n e _ p h o n e

o n e _ s h o n e _ t h e _ o n e

so γ(20) = 6.
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However the smallest shift that matches

P [20..23] is 14

o n e _ s h o n e _ t h e _ o n e _ p h o n e

o n e _ s h o n e

so γ(19) = 14.

What about γ(18)? What is the smallest shift

that can match the characters p h o n e? A

shift of 20 will match all those that are still

left.

o n e _ s h o n e _ t h e _ o n e _ p h o n e

o n e

This then shows us that γ(j) = 20 for all

j ≤ 18, so

γ(j) =









6 20 ≤ j ≤ 22
14 j = 19
20 1 ≤ j ≤ 18
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Longest Common Subsequence

Consider the following problem

LONGEST COMMON

SUBSEQUENCE

Instance: Two sequences X and Y

Question: What is a longest common

subsequence of X and Y

Example

If

X = 〈A, B, C, B, D, A, B〉

and

Y = 〈B, D, C, A, B, A〉

then a longest common subsequence is either

〈B, C, B, A〉

or

〈B, D, A, B〉
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A recursive relationship

As is usual for dynamic programming problems

we start by finding an appropriate recursion,
whereby the problem can be solved by solving

smaller subproblems.

Suppose that

X = 〈x1, x2, . . . , xm〉

Y = 〈y1, y2, . . . , yn〉

and that they have a longest common

subsequence

Z = 〈z1, z2, . . . , zk〉

If xm = yn then zk = xm = yn and Zk−1 is a

LCS of Xm−1 and Yn−1.

Otherwise Z is either a LCS of Xm−1 and Y or
a LCS of X and Yn−1.

(This depends on whether zk $= xm or zk $= yn

respectively — at least one of these two

possibilities must arise.)
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A recursive solution

This can easily be turned into a recursive

algorithm as follows.

Given the two sequences X and Y we find the

LCS Z as follows:

If xm = yn then find the LCS Z ′ of Xm−1 and

Yn−1 and set Z = Z ′xm.

If xm $= yn then find the LCS Z1 of Xm−1 and

Y , and the LCS Z2 of X and Yn−1, and set Z

to be the longer of these two.

It is easy to see that this algorithm requires the

computation of the LCS of Xi and Yj for all

values of i and j. We will let l(i, j) denote the

length of the longest common subsequence of

Xi and Yj.

Then we have the following relationship on the

lengths

l(i, j) =









0 if ij = 0
l(i − 1, j − 1) + 1 if xi = yj
max(l(i − 1, j), l(i, j − 1)) if xi $= yj
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Memoization

The simplest way to turn a top-down recursive

algorithm into a sort of dynamic programming

routine is memoization. The idea behind this is

that the return values of the function calls are

simply stored in an array as they are computed.

The function is changed so that its first step is

to look up the table and see whether l(i, j) is

already known. If so, then it just returns the

value immediately, otherwise it computes the

value in the normal way.

Alternatively, we can simply accept that we

must at some stage compute all the O(n2)

values l(i, j) and try to schedule these

computations as efficiently as possible, using a

dynamic programming table.

39

The dynamic programming table

We have the choice of memoizing the above

algorithm or constructing a bottom-up

dynamic programming table.

In this case our table will be an

(m + 1) × (n + 1) table where the (i, j) entry is

the length of the LCS of Xi and Yj.

Therefore we already know the border entries

of this table, and we want to know the value of

l(m, n) being the length of the LCS of the

original two sequences.

In addition to this however we will retain some

additional information in the table - namely

each entry will contain either a left-pointing

arrow ←, a upward-pointing arrow ↑ or a

diagonal arrow ↖.

These arrows will tell us which of the subcases

was responsible for the entry getting that

value.
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Our example

For our worked example we will use the

sequences

X = 〈0,1,1,0,1,0,0,1〉

and

Y = 〈1,1,0,1,1,0〉

Then our initial empty table is:

j 0 1 2 3 4 5 6
i yj 1 1 0 1 1 0
0 xi
1 0
2 1
3 1
4 0
5 1
5 0
7 0
8 1
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The first table

First we fill in the border of the table with the
zeros.

j 0 1 2 3 4 5 6
i yj 1 1 0 1 1 0
0 xi 0 0 0 0 0 0 0
1 0 0
2 1 0
3 1 0
4 0 0
5 1 0
5 0 0
7 0 0
8 1 0

Now each entry (i, j) depends on xi, yj and the
values to the left (i, j − 1), above (i − 1, j), and
above-left (i − 1, j − 1).

In particular, we proceed as follows:

If xi = yj then put the symbol ↖ in the square,
together with the value l(i − 1, j − 1) + 1.

Otherwise put the greater of the values
l(i − 1, j) and l(i, j − 1) into the square with the
appropriate arrow.
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The first row

It is easy to compute the first row, starting in

the (1,1) position:

j 0 1 2 3 4 5 6
i yj 1 1 0 1 1 0
0 xi 0 0 0 0 0 0 0
1 0 0 ↑ 0 ↑ 0 ↖ 1 ← 1 ← 1 ↖ 1
2 1 0
3 1 0
4 0 0
5 1 0
6 0 0
7 0 0
8 1 0

Computation proceeds as described above.
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The final array

After filling it in row by row we eventually

reach the final array:

j 0 1 2 3 4 5 6
i yj 1 1 0 1 1 0
0 xi 0 0 0 0 0 0 0
1 0 0 ↑ 0 ↑ 0 ↖ 1 ← 1 ← 1 ↖ 1
2 1 0 ↖ 1 ↖ 1 ↑ 1 ↖ 2 ↖ 2 ← 2
3 1 0 ↖ 1 ↖ 2 ← 2 ↖ 2 ↖ 3 ← 3
4 0 0 ↑ 1 ↑ 2 ↖ 3 ← 3 ↑ 3 ↖ 4
5 1 0 ↖ 1 ↖ 2 ↑ 3 ↖ 4 ↖ 4 ↑ 4
6 0 0 ↑ 1 ↑ 2 ↖ 3 ↑ 4 ↑ 4 ↖ 5
7 0 0 ↑ 1 ↑ 2 ↖ 3 ↑ 4 ↑ 4 ↖ 5
8 1 0 ↑ 1 ↖ 2 ↑ 3 ↖ 4 ↖ 5 ↑ 5

This then tells us that the LCS of X = X8 and

Y = Y6 has length 5 — because the entry

l(8,6) = 5.

This time we have kept enough information,

via the arrows, for us to compute what the

LCS of X and Y is.
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Finding the LCS

The LCS can be found (in reverse) by tracing
the path of the arrows from l(m, n). Each
diagonal arrow encountered gives us another
element of the LCS.

As l(8,6) points to l(7,6) so we know that the
LCS is the LCS of X7 and Y6.

Now l(7,6) has a diagonal arrow, pointing to
l(6,5) so in this case we have found the last
entry of the LCS — namely it is x7 = y6 = 0.

Then l(6,5) points (upwards) to l(5,5), which
points diagonally to l(4,4) and hence 1 is the
second-last entry of the LCS.

Proceeding in this way, we find that the LCS is

11010

Notice that if at the very final stage of the
algorithm (where we had a free choice) we had
chosen to make l(8,6) point to l(8,5) we
would have found a different LCS

11011
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Finding the LCS

We can trace back the arrows in our final array,

in the manner just described, to determine that

the LCS is 11010 and see which elements

within the two sequences match.

j 0 1 2 3 4 5 6
i yj 1 1 0 1 1 0
0 xi 0 0 0 0 0 0 0
1 0 0 ↑ 0 ↑ 0 ↖ 1 ← 1 ← 1 ↖ 1

2 1 0 ↖ 1 ↖ 1 ↑ 1 ↖ 2 ↖ 2 ← 2

3 1 0 ↖ 1 ↖ 2 ← 2 ↖ 2 ↖ 3 ← 3

4 0 0 ↑ 1 ↑ 2 ↖ 3 ← 3 ↑ 3 ↖ 4

5 1 0 ↖ 1 ↖ 2 ↑ 3 ↖ 4 ↖ 4 ↑ 4

6 0 0 ↑ 1 ↑ 2 ↖ 3 ↑ 4 ↑ 4 ↖ 5

7 0 0 ↑ 1 ↑ 2 ↖ 3 ↑ 4 ↑ 4 ↖ 5

8 1 0 ↑ 1 ↖ 2 ↑ 3 ↖ 4 ↖ 5 ↑ 5

A match occurs whenever we encounter a

diagonal arrow along the reverse path.

See section 15.4 of CLRS for the pseudo-code

for this algorithm.

46

Analysis

The analysis for longest common subsequence

is particularly easy.

After initialization we simply fill in mn entries

in the table — with each entry costing only a

constant number of comparisons. Therefore

the cost to produce the table is Θ(mn)

Following the trail back to actually find the

LCS takes time at most O(m + n) and

therefore the total time taken is Θ(mn).
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Data Compression Algorithms

Data compression algorithms exploit patterns

in data files to compress the files. Every

compression algorithm should have a

corresponding decompression algorithm that

can recover (most of) the original data.

Data compression algorihtms are used by

programs such as WinZip, pkzip and zip. They

are also used in the definition of many data

formats such as pdf, jpeg, mpeg and .doc.

Data compression algorithms can either be

lossless (e.g. for archiving purposes) or lossy

(e.g. for media files).

We will consider some lossless algorithms

below.

48



Huffman coding

A nice application of a greedy algorithm is

found in an approach to data compression

called Huffman coding.

Suppose that we have a large amount of text

that we wish to store on a computer disk in an

efficient way. The simplest way to do this is

simply to assign a binary code to each

character, and then store the binary codes

consecutively in the computer memory.

The ASCII system for example, uses a fixed

8-bit code to represent each character. Storing

n characters as ASCII text requires 8n bits of

memory.
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Simplification

Let C be the set of characters we are working
with. To simplify things, let us suppose that
we are storing only the 10 numeric characters
0, 1, . . ., 9. That is, set C = {0,1, · · · ,9}.

A fixed length code to store these 10
characters would require at least 4 bits per
character. For example we might use a code
like this:

Char Code
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

However in any non-random piece of text,
some characters occur far more frequently than
others, and hence it is possible to save space
by using a variable length code where the more
frequently occurring characters are given
shorter codes.
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Non-random data

Consider the following data, which is taken

from a Postscript file.

Char Freq
5 1294
9 1525
6 2260
4 2561
2 4442
3 5960
7 6878
8 8865
1 11610
0 70784

Notice that there are many more occurrences

of 0 and 1 than the other characters.
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A good code

What would happen if we used the following

code to store the data rather than the fixed

length code?

Char Code
0 1
1 010
2 01111
3 0011
4 00101
5 011100
6 00100
7 0110
8 000
9 011101

To store the string 0748901 we would get

0000011101001000100100000001

using the fixed length code and

10110001010000111011010

using the variable length code.
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Prefix codes

In order to be able to decode the variable

length code properly it is necessary that it be a

prefix code — that is, a code in which no

codeword is a prefix of any other codeword.

Decoding such a code is done using a binary

tree.

5 9

6 4 2

3 7

8 1

0

!
!!

!
!!

!
!!

!
!!

!
!!

!
!!

!
!!

""""""""

""""""""

#
##

#
##

#
##

#
##

#
##

#
##

#
##

$$$$$$$$

$$$$$$$$

0

0

0

0 0

0 0

0

0

1

1 1

1 1

1 1

1

1

53

Cost of a tree

Now assign to each leaf of the tree a value,

f(c), which is the frequency of occurrence of

the character c represented by the leaf.

Let dT (c) be the depth of character c’s leaf in

the tree T .

Then the number of bits required to encode a

file is

B(T) =
∑

c∈C

f(c)dT (c)

which we define as the cost of the tree T .
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For example, the number of bits required to

store the string 0748901 can be computed from

the tree T :

5:0 9:1

6:0 4:1 2:0

3:0 7:1

8:1 1:1

0:2

!
!!

!
!!

!
!!

!
!!

!
!!

!
!!

!
!!

""""""""

""""""""

#
##

#
##

#
##

#
##

#
##

#
##

#
##

$$$$$$$$

$$$$$$$$

d=6

d=5

d=4

d=3

d=2

d=1

d=0

giving

B(T) = 2×1+1×3+1×3+1×4+1×5+1×6 = 23.

Thus, the cost of the tree T is 23.
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Optimal trees

A tree representing an optimal code for a file is

always a full binary tree — namely, one where

every node is either a leaf or has precisely two

children.

Therefore if we are dealing with an alphabet of

s symbols we can be sure that our tree has

precisely s leaves and s − 1 internal nodes, each

with two children.

Huffman invented a greedy algorithm to

construct such an optimal tree.

The resulting code is called a Huffman code

for that file.
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Huffman’s algorithm

The algorithm starts by creating a forest of s

single nodes, each representing one character,

and each with an associated value, being the

frequency of occurrence of that character.

These values are placed into a priority queue

(implemented as a linear array).

5:1294 9:1525 6:2260 4:2561 2:4442

3:5960 7:6878 8:8865 1:11610 0:70784

Then repeat the following procedure s − 1

times:

Remove from the priority queue the two nodes

L and R with the lowest values, and create a

internal node of the binary tree whose left child

is L and right child R.

Compute the value of the new node as the

sum of the values of L and R and insert this

into the priority queue.
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The first few steps

Given the data above, the first two entries off

the priority queue are 5 and 9 so we create a

new node

5:1294 9:1525

2819
!

!
"

"

The priority queue is now one element shorter,

as shown below:

6:2260 4:2561 2819

5:1294 9:1525
!

!!

"
""

2:4442 ...

The next two are 6 and 4 yielding

5:1294 9:1525

2819
!

!
"

"

6:2260 4:2561

4821 · · ·
!

!
"

"
2:4442
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Now the smallest two nodes are 2 and the

internal node with value 2819, hence we now

get:

6:2260 4:2561

4821
!

!
"

"
3:5960 7:6878

5:1294 9:1525

2819 2:4442

7261 · · ·
!

!
"

"

!
!

"
"

Notice how we are growing sections of the tree

from the bottom-up (compare with the tree on

slide 16).

See CLRS (page 388) for the pseudo-code

corresponding to this algorithm.

59

Why does it work?

In order to show that Huffman’s algorithm

works, we must show that there can be no

prefix codes that are better than the one

produced by Huffman’s algorithm.

The proof is divided into two steps:

First it is necessary to demonstrate that the

first step (merging the two lowest frequency

characters) cannot cause the tree to be

non-optimal. This is done by showing that any

optimal tree can be reorganised so that these

two characters have the same parent node.

(see CLRS, Lemma 16.2, page 388)

Secondly we note that after making an optimal

first choice, the problem can be reduced to

finding a Huffman code for a smaller alphabet.

(see CLRS, Lemma 16.3, page 391)
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Adaptive Huffman Coding

Huffman coding requires that we have accurate

estimates of the probablities of each character

occuring.

In general, we can make estimates of the

frequencies of characters occuring in English

text, but these estimates are not useful when

we consider other data formats.

Adaptive Huffman coding calculates character

frequencies on the fly and uses these dynamic

frequencies to encode characters. This

technique can be applied to binary files as well

as text files.
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Algorithms: Adaptive Huffman Coding

The Adaptive Huffman Coding algorithms
seek to create a Huffman tree on the fly. A
Huffman Coding allows us to encode frequently
occurring characters in a lesser number of bits
than rarely occurring characters. Adaptive
Huffman Coding determines determines the
Huffman Tree only from the frequencies of the
characters already read.

Recall that prefix codes are defined using a
binary tree. It can be shown that a prefix code
is optimal if and only if the binary tree has the
sibling property.

A binary tree recording the frequency of
characters has the sibling property iff

1. every node except the root has a sibling.

2. each right-hand sibling (including non-leaf
nodes) has at least as high a frequency as
its left-hand sibling

(The frequency of non-leaf nodes ins the sum
of the frequency of it’s children).
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Adaptive Huffman Coding
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Adaptive Huffman Coding

As characters are read it is possible to

efficiently update the frequencies, and modify

the binary tree so that the sibling property is

preserved. It is also possible to do this in a

deterministic way so that a similar process can

decompress the code.

See

http://www.cs.duke.edu/ jsv/Papers/Vit87.jacmACMversion.pdf

for more details.

As opposed to the LZ algorithms that follow,

Huffman methods only encode one character

at a time. However, best performance often

comes from combining compression algorithms

(for example, gzip combines LZ77 and

Adaptive Huffman Coding).
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Ziv-Lempel compression algorithms

The Ziv-Lempel compression algorithms are a

family of compression algorithms that can be

applied to arbitrary file types.

The Ziv-Lempel algorithms represent recurring

strings with abbreviated codes. There are two

main types:

• LZ77 variants use a buffer to look for

recurring strings in a small section of the

file.

• LZW variants dynamically create a

dictionary of recurring strings, and assigns

a simple code to each such string.
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Algorithms: LZ77

The LZ77 algorithms use a sliding window.

The sliding window is a buffer consisting of the

last m letters encoded (a0...am−1) and the next

n letters to be encoded (b0...bn−1).

Initially we let a0 = a1 = ... = an−1 = w0 and

output 〈0,0, w〉 where w0 is the first letter of

the word to be compressed

The algorithm looks for the longest prefix of

b0...bn−1 appearing in a0...am−1. If the longest

prefix found is b0...bk−1 = ai...ai+k−1, then the

entire prefix is encoded as the tuple

〈i, k, bk〉

where i is the offset, k is the length and bk is

the next character.
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LZ77 Example

Suppose that m = n = 4 and we would like to

compress the word w = aababacbaa

Word Window Output
aababacbaa 〈0,0, a〉

aababacbaa aaaa aaba 〈0,2, b〉

abacbaa aaab a abac 〈2,3, c〉

baa abac baa 〈1,2, a〉

This outputs

〈0,0, a〉〈0, 2, b〉〈2,3, c〉〈1,2, a〉
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LZ77 Example cont.

To decompress the code we can reconstruct

the sliding window at each step of the

algorithm. Eg, given

〈0,0, a〉〈0, 2, b〉〈2,3, c〉〈1,2, a〉

Input Window Output
〈0,0, a〉

〈0,2, b〉 aaaa aab? aab

〈2,3, c〉 aaab a abac abac

〈1,2, a〉 abac baa? baa

Note the trick with the third triple 〈2,3, c〉 that

allows the look-back buffer to overflow into the

look ahead buffer. See

http://en.wikipedia.org/wiki/LZ77 and LZ78 for

more information.

68



Algorithms: LZW

The LZW algorithms use a dynamic dictionary

The dictionary maps words to codes and is

initially defined for every byte (0-255). The

compression algorithm is as follows:

w = null

while(k = next byte)

if wk in the dictionary

w = wk

else

add wk to dictionary

output code for w

w = k

output code for w
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Algorithms: LZW

The decompression algorithm is as follows:

k = next byte

output k

w = k

while(k = next byte)

if there’s no dictionary entry for k

entry = w + first letter of w

else

entry = dictionary entry for k

output entry

add w + first letter of entry to dictionary

w = entry
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LZW Example

Consider the word w = aababa, and a dictionary

D where D[0] = a, D[1] = b and D[2] = c. The

compression algorithm proceeds as follows:

Read Do Output
a w = a −
a w = a, D[3] = aa 0
b w = b, D[4] = ab 0
a w = a, D[5] = ba 1
b w = ab −
a w = a, D[6] = aba 4
c w = c, D[7] = ac 0
b w = b, D[8] = cb 2
a w = ba −
a w = a, D[9] = baa 5

0
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LZW Example cont.

To decompress the code 〈00140250〉 we

initialize the dictionary as before. Then

Read Do Output
0 w = a a
0 w = a, D[3] = aa a
1 w = b, D[4] = ab b
4 w = ab, D[5] = ba ab
0 w = a, D[6] = aba a
2 w = c, D[7] = ac c
5 w = ba, D[8] = cb ba
0 w = a, D[9] = baa a

See

http://en.wikipedia.org/wiki/LZ77 and LZ78,

also.
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Summary

1. String matching is the problem of finding

all matches for a given pattern, in a given

sample of text.

2. The Rabin-Karp algorithm uses prime

numbers to find matches in linear time in

the expected case.

3. A String matching automata works in linear

time, but requires a significant amount of

precomputing.

4. The Knuth-Morris-Pratt uses the same

principal as a string matching automata,

but reduces the amount of precomputation

required.
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Summary cont.

5. The Boyer-Moore algorithm uses the bad

character and good suffix heuristics to give

the best performance in the expected case.

6. The longest common subsequence problem

is can be solved using dynamic

programming.

7. Dynammic programming can improve the

efficiency of divide and conquor algorithms

by storing the resul;ts of sub-computations

so they can be reused later.

8. Data Compression algorithms use pattern

matching to find efficient ways to compress

file.
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Summary cont.

9. Huffman coding uses a greedy approach to

recode the alphabet with a more efficient

binary code.

10. Adaptive Huffman coding uses the same

approach, but with the overhead of

precomputing the code.

11. LZ77 uses pattern matching to express

segments of the file in terms of recently

occuring segments.

12. LZW uses a hash function to store

commonly occuring strings so it can refer

to them by their key.
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1

Algorithm Design

In this section we will consider some general

algorithmic techniques for optimization

problems — namely greedy algorithms,

dynamic programming and Approximation

Algorithms.

A greedy algorithm proceeds by making a

single choice at each stage of the computation

— at each stage the algorithm chooses the

“best” move to make based on purely local

information. Previously seen examples include

Kruskal’s algorithm, Prim’s algorithm and

Huffman Coding.

Greedy algorithms are usually extremely

efficient, but they can only be applied to a

small number of problems.

2

Greedy Algorithms

Consider the following simple computational

problem.

ACTIVITY SELECTION

Instance: A set S = {t1, t2, . . . , tn} of

“activities” where each activity ti has an

associated start time si and finish time fi.

Question: Select the largest possible number

of tasks from S that can be completed without

incompatibilities (two activities are

incompatible iff they overlap).

Example Consider the following set of

activities

{(6,9), (1,10), (2,4), (1,7), (5,6), (8,11), (9,11)}

The following schedules are all allowable

(1,10)

(1,7), (8,11)

(2,4), (5,6), (9,11)

3

Intervals

There is an obvious relationship between
activities and intervals on the real line.

An interval of the real line consists of the real
numbers lying between two reals called the
endpoints of the interval.

(a, b) = {x ∈ R | a < x < b}

If the interval includes its endpoints then it is
said to be closed, otherwise open. It can also
be open at one endpoint and closed at the
other.

(a, b) = {x ∈ R | a < x < b}

[a, b) = {x ∈ R | a ≤ x < b}

(a, b] = {x ∈ R | a < x ≤ b}

[a, b] = {x ∈ R | a ≤ x ≤ b}

For definiteness we will henceforth make the
assumption that all the activity intervals are
closed on the left and open on the right.

ti = [si, fi)

4



Problem reduction

To solve this problem we must make some

choice of the first interval, then the second

interval and so on. Clearly the later choices

depend on the earlier ones in that some

time-slots are no longer available.

Suppose that we (arbitrarily) select the interval

[1,7) from the collection

{[6,9), [1,10), [2,4), [1,7), [5,6), [8,11), [9,11)}.

Then all the intervals that overlap with this

one can no longer be scheduled, leaving the set

{[8,11), [9,11)}

from which we must choose the largest

possible set of pairwise disjoint intervals — in

this case just one of the remaining intervals.

This is simply a smaller instance of the same

problem ACTIVITY SELECTION. Therefore

an algorithm for the problem can be expressed

recursively simply by specifying a rule for

choosing one interval.

5

Greedy approach

It is easy to see that choosing [1,7) was a bad
choice, which raises the question of what
would be a good choice?

A greedy algorithm simply chooses what is
locally the best option at every stage. There
are various possible ways to be greedy,
including

• Choose the shortest interval

• Choose the interval starting the first

• Choose the interval finishing the first

• Choose the interval that intersects with the
fewest others

The greedy approach can be viewed as a very
local procedure — making the best choice for
the current moment without regard for any
possible future consequences of that choice.

Sometimes a greedy approach yields an optimal

solution, but frequently it does not.

6

Activity Selection

Consider the greedy approach of selecting the

interval that finishes first from the collection

{[6,9), [1,10), [2,4), [1,7), [5,6), [8,11), [9,11)}

Then we would choose [2,4) as the first

interval, and after eliminating clashes we are

left with the task of finding the largest set of

mutually disjoint intervals from the set

{[6,9), [5,6), [8,11), [9,11)}.

At this stage, we simply apply the algorithm

recursively. Therefore being greedy in the same

way we select [5,6) as the next interval, and

after eliminating clashes (none in this case) we

are left with.

{[6,9), [8,11), [9,11)}.

Continuing in this way gives the ultimate result

that the largest possible collection of

non-intersecting intervals is

[2,4) then [5,6) then [6,9) then [9,11).

7

Algorithm

As a precondition the list of tasks must be

sorted into ascending order of their finish times

to ensure

finish(t1) ≤ finish(t2) ≤ finish(t3) ≤ . . .

The pseudo-code will then process the sorted

list of tasks t:

procedure GREEDY-ACTIVITY-SEL(t)

A ← {t1}

i ← 1

for m ← 2 to length(t) do

if start(tm) ≥ finish(ti) then

A ← A ∪ {tm}

i ← m

end if

end for

return A

It returns A, a subset of compatible activities.
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Does it work?

The greedy algorithm gives us a solution to the

activity scheduling problem — but is it actually

the best solution, or could we do better by

considering the global impact of our choices

more carefully.

For the problem ACTIVITY SELECTION

we can show that the greedy algorithm always

finds an optimal solution.

We suppose first that the activities are ordered

by finishing time - so that

f1 ≤ f2 ≤ · · · ≤ fn

Now consider some optimal solution for the

problem consisting of k tasks

ti1, ti2, . . . , tik

Then

t1, ti2, . . . , tik

is also an optimal solution since it will also

consist of k tasks.
9

Intuitive Proof

The formal proof that we can use t1 as the

first task and be certain that we will not

change the number of compatible tasks is

rather involved and you are referred to the text

book (see CLRS, pages 373-375).

However the basic idea is a proof by

contradiction. Assume using t1 results in a

sub-optimal solution and therefore we can find

a compatible solution with (k + 1) tasks. This

would only be possible if we can find two tasks

t′1 and t′′1 which occupy the same interval as t1.

But this would imply

(s1 ≤ (s′1 < f ′
1) ≤ (s′′1 < f ′′

1) ≤ f1)

and hence that f ′
1 < f1 but we know that the

tasks are sorted in order of ascending finish

times, so no task can have a finish time less

that that of t1, leading to a contradiction.

Hence using t1 as the first task must lead to

an optimal solution with k tasks.

10

Running time

The running time for this algorithm is

dominated by the time taken to sort the n

inputs at the start of the algorithm.

Using quicksort this can be accomplished in an

average time of O(n lgn).

As greedy algorithms are so simple, they always

have low degree polynomial running times.

Because they are so quick, we might be

tempted to ask why we should not always use

greedy algorithms.

Unfortunately, greedy algorithms only work for

a certain narrow range of problems — most

problems cannot be solved by a greedy

algorithm.
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Vertex Cover

A vertex cover for a graph G is a set of

vertices V ′ ⊆ V (G) such that every edge has at

least one end in V ′ (the set of vertices covers

all the edges.

The following graph

!
!

!
!

!

!
!

!
!

!

! ! !

! ! !

! ! !

has a vertex cover of size 4.

!
!

!
!

!

!
!

!
!

!

! ! "

" ! "

! " !

The VERTEX COVER problem is to find the

smallest vertex cover for a graph G.
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A greedy algorithm

One greedy algorithm is to cover as many

edges as possible with each choice, by

choosing the vertex of highest degree at each

stage and then deleting the covered edges.

For this graph

! !

! ! ! ! !

! !

!

the greedy algorithm gives

" !

" ! " ! "

! "

!

while the true solution is

! !

! " ! " !

" !

"
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Greed is not always good

The previous example shows that it does not

always pay to be greedy. Although choosing

the vertex of highest degree does cover the

greatest number of edges, that choice makes

our later choices worse.

In problems where the greedy algorithm works,

the earlier choices do not interfere negatively

with the later choices.

Unfortunately, most problems are not amenable

to the greedy algorithm.

VERTEX COVER is actually a very hard

problem, and there is no known algorithm that

is essentially better than just enumerating all

the possible subsets of vertices. (Technically

speaking, it is an example of a problem that is

known to be NP-hard.)
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Non-deterministic polynomial time

A computational problem is in the class P,

(the polynomial time problems) if there is a

deterministic algorithm that solves the problem

and runs in time O(nk) where k is some

integer. These problems are generally

considered feasible.

A computational problem is in the class NP,

(the non-deterministic polynomial time

problems) if there is a non-deterministic

algorithm that that can solve the problem in

polynomial time.

That is, an NP algorithm requires lucky

guesses to work efficiently (i.e. guessing what

the optimal vertex cover is).
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More NP-problems

Consider the following two problems:

TRAVELLING SALESMAN

Instance: A finite set C = {c1, c2, . . . , cn} of

“cities”, a “distance” d(ci, cj) ∈ R+ between

each pair of cities.

Question: What is the shortest circular tour

visiting each city exactly once?

DOMINATING SET

Instance: A graph G

Question: What is the smallest dominating set

for G?

(A dominating set of a graph is a set of

vertices V ′ ⊆ V such that every vertex of G has

distance at most 1 from some vertex in V ′.)

16



How hard are these problems?

There are no algorithms known for these

problems whose time complexity is a

polynomial function of the size of the input.

This means that the only known algorithms

take time that is exponential in the size of the

input.

There is a large class of problems, known as

NP-hard problems which have the following

properties

• There is no polynomial time algorithm

known for the problem

• If you could solve one of these problems in

polynomial time, then you could solve them

all in polynomial time

Both TRAVELLING SALESMAN and

DOMINATING SET are NP-hard.

The most important problem in theoretical

computer science is whether or not this class

of problems can be solved in polynomial time.
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The 0-1 Knapsack Problem

Suppose we are given a knapsack of a given

capacity, and a selection of items, each with a

given weight and value. The 0-1 knapsack

problem is to select the combination of items

with the greatest value that will fit into the

knapsack.

Formally, if W is the size of the knapsack and

{1, ...n} is a set of items where the weight of i

is wi and the value of i is vi, then the problem

is to:

Select T ⊆ {1, ..., n} that maximizes Σi∈Tvi,

given Σi∈Twi < W .

For example W might be the amount of

memory on an MP3 player, wi may be the size

of the song i, and vi may reflect how much you

like song i.
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The Fractional Knapsack Problem

The fractional knapsack problem is similar,

except that rather than choosing which items

to take, you are able to choose how much of

each item you will take. That is the problem is

to find a function T : {1, ..., n} → [0,1] that

maximizes Σi∈TT (i)vi, given Σi∈TT (i)wi < W .

It is easy to see that the fractional knapsack

problem can be solved by a greedy algorithm.

However the 0-1 knapsack problem is much

harder, and has been shown to be

NP-complete.

While there is no known “feasible” solution for

the 0-1 knapsack problem we will examine a

dynamic programming solution that can give

reasonable performance.

19

A dynamic programming solution

The structure of a dynamic programming

algorithm is to:

1. define the solution to the problem in terms

of solutions to sub-problems;

2. recursively solve the smaller sub-problems,

recording the solutions in a table;

3. construct the solution to the original

problem from the table.

20



A recursive solution

Given the 0-1 knapsack problem specified by

the pair ({w1, ...wn}, {v1, ..., vn}, W ), we will

consider the solution to the sub-problems

specified by the pairs ({w1, ...wm}, {v1, ..., vm}, w)

where m < n and w < W .

Let V (m, w) be the value of the optimal

solution to this subproblem. Then for any m

and any w, we can see

V (m, w) = max{V (m−1, w), vm+V (m−1, w−wm)}.

Since V (0, w) = 0 for all w this allows us to

define a (very inefficient) recursive algorithm.
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A dynamic programming solution

Often inefficient recursive algorithms can be

made more efficient by using dynamic

programming. The structure of a dynamic

programming algorithm is to:

1. define as recursive solution to the problem

in terms of solutions to sub-problems;

2. recursively solve the smaller sub-problems,

recording the solutions in a table;

3. construct the solution to the original

problem from the table.

For the 0-1 knapsack problem we will construct

a table where the entries are V (i, j) for

i = 0, ..., n and j = 0, ..., W .
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Example

Suppose W = 5 and we are given three items

where

i 1 2 3
vi 2 3 4
wi 1 2 3

The table initially looks like

i\w 0 1 2 3 4 5
0 0 0 0 0 0 0
1
2
3
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Pseudo-code

Knapsack({w1, ...wn}, {v1, ..., vn}, W )

for w from 1 to n do

V (0, w) ← 0

for i from 1 to n do

for w from 1 to n do

if V (i − 1, w) > vi + V (i − 1, w − wi) do

V (i, w) ← V (i − 1, w)

else

V (i, w) ← vi + V (i − 1, w − wi)

return V (n, W )

It is clear that the complexity of this algorithm

is O(nW ). Note that this is not a polynomial

solution to an NP-complete problem. Why not
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Example

i\w 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 2 2 2 2 2
2 0 2 3 4 4 4
3 0 2 3 4 6 7

Note that the actual items contributing to the

solution (that is, items 2 and 3) can be found

by examination of the table. If T(i, w) are the

items that produce the solution V (i, w), then

T(i, w) = T(i − 1, w) if V (i, w) = V (i − 1, w)
= {i} ∪ T(i − 1, w − wi) otherwise.
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Linear Programming

The fractional knapsack problem is an example

of a linear programming problem. A linear

programme is an optimization problem of the

form:

Find real numbers: x1, ..., xn

that maximizes Σn
i=1cixi

subject to Σn
i=1aijxi ≤ bj for j = 1, ..., m

and xi ≥ 0 for j = 1, ..., n.

Therefore a linear programme is paramaterized

by the the cost vector, (c1, ..., cn), an n × m

array of constraint coefficients, aij, and a

bounds vector (b1, ..., bm).

It is clear the fractional knapsack problem can

be presented as a linear programme.
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Applications of linear programming

Many natural optimization problems can be

expressed as a linear programme.

For example, given a weighted, directed graph,

G = (V, E), the length of shortest path from s

to t can be described using a linear programme.

Using the distance array from the Bellman-Ford

algorithm, we have the programme:

Maximize d[t]

subject to d[v] − d[u] ≤ w(u, v) for j = 1, ..., m

and d[s] = 0.

Maximum flow problems can also be easily

converted into linear programmes.
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Solving linear programmes

All linear programmes can be solved by the

simplex algorithm, which requires exponential

time, but is generally feasible in practise.

The simplex algorithm is effectively a

hill-climbing algorithm that moves

incrementally improves the solution until no

further improvements can be made.

There are also polynomial interior point

methods to solve linear programmes.

We won’t examine these algorithms. Rather we

will simply consider the technique of converting

problems into linear programmes.
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Example
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Integer Linear Programming

Adding the constraint that all solutions to a

linear programme be integer values, gives an

integer linear programme.

The 0-1 knapsack problem can be written as

an integer linear programme, as can the

travelling salesmen problem.

Therefore we should not expect to find a

feasible algorithm to to solve the integer linear

programming problem.
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Approximation Algorithms

An approximation algorithm is an algorithm

that produces some feasible solution but with

no guarantee that the solution is optimal.

Therefore an approximation algorithm for the

travelling salesman problem would produce

some valid circular tour, but it may not be the

shortest tour.

An approximation algorithm for the minimum

dominating set problem would produce some

dominating set for G, but it may not be the

smallest possible dominating set.

The performance of an approximation

algorithm on a given instance I is measured by

the ratio

A(I)/OPT(I)

where A(I) is the value given by the

approximation algorithm and OPT(I) is the

true optimum value.
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Standard Instances

Both TRAVELLING SALESMAN and

DOMINATING SET have been fairly

extensively studied, and a number of algorithms

for their solution have been proposed.

In each case there are some standard instances

for would-be solvers to test their code on. A

package called TSPLIB provides a variety of

standard travelling salesman problems. Some

of them have known optimal solutions, while

others are currently unsolved and TSPLIB just

records the best known solution.

There are problems with around 2000 cities for

which the best solution is not known, but this

problem has been very heavily studied by

brilliant groups of researchers using massive

computer power and very sophisticated

techniques.
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The football pool problem

In many European countries a popular form of

lottery is the “football pools”, which are based

on the results of soccer matches. Each player

picks the results of n matches, where the result

can be either a Home Win, Away Win or Draw.

By assigning three values as follows

0 for Home Win

1 for Away Win

2 for Draw

we can think of this choice as a word of length

n with entries from the alphabet {0,1,2}.

For example

020201

would mean that the player had picked Home

Wins for matches 1, 3 and 5, Away Win for

match 6 and Draws for matches 2 and 4.
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Winning 2nd prize

Now there are a total of 729 possible outcomes

for the 6 matches. To guarantee winning the

first prize we would need to make 729 different

entries to cover every possible outcome.

Suppose however that getting all but one of

the predictions correct results in winning

second prize. So for example if our entry was

020201 and the actual outcome was 010201

then we would have 5 out of 6 correct and

would win second prize.

In trying to generate pools “systems” we want

to be able to answer the question

“How many entries do we need to make in

order to guarantee winning at least second

prize?”

34

A graph domination problem

We can define a graph F6 as follows:

The vertices of F6 are the 729 words of

length 6 over {0,1,2}.

Two vertices are adjacent if the

corresponding words differ in only one

coordinate position.

Then we are seeking a minimum dominating

set for the graph F6.

More generally, we can define a series of

graphs Fn where the vertices are the 3n words

of length n with entries from {0,1,2} with the

same rule for determining adjacency.

This collection of graphs is called the football

pool graphs and has been quite extensively

studied with regard to the size of the minimum

dominating set.
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Known records

The following are the best known values for a

minimum dominating set for Fn.

n Number vertices Best known dom. set
2 9 3
3 27 5
4 81 9
5 243 27
6 729 ≤ 73
7 2187 ≤ 186
8 6561 ≤ 486

Notice that the minimum dominating set for F4

is perfect — each vertex is adjacent to 8

others, so that each vertex of the dominating

set dominates 9 vertices. As there are 81

vertices in F4 this means every vertex is

dominated by exactly one vertex in the

dominating set.

This is usually called a perfect code.
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A greedy approximation algorithm

There is a natural greedy approximation

algorithm for the minimum dominating set

problem.

Start by selecting a vertex of maximum degree

(so it dominates the greatest number of

vertices). Then mark or delete all of the

dominated vertices, and select the next vertex

that dominates the greatest number of

currently undominated vertices. Repeat until

all vertices are dominated.

The graph P5 (a path with 5 vertices) shows

that this algorithm does not always find the

optimal solution.
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Types of Travelling Salesman Instance

Consider a travelling salesman problem defined

in the following way. The “cities” are n

randomly chosen points ci = (xi, yi) on the

Euclidean plane, and the “distances” are

defined by the normal Euclidean distance

d(ci, cj) =
√

(xi − xj)
2 + (yi − yj)

2

or the Manhattan distance

d(ci, cj) = |xi − xj| + |yi − yj|

Instance of the travelling salesman problem

that arise in this fashion are called geometric

travelling salesman problems. Here the

“distance” between the cities is actually the

geometric distance between the corresponding

points under some metric.
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Properties of geometric instances

All geometric instances have the properties

that they are symmetric and satisfy the

triangle inequality.

If

d(ci, cj) = d(cj, ci)

for all pairs of cities in an instance of

TRAVELLING SALESMAN then we say that

the instance is symmetric.

If

d(ci, ck) ≤ d(ci, cj) + d(cj, ck)

for all triples of cities in an instance of

TRAVELLING SALESMAN then we say that

the instance satisfies the triangle inequality.
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Non-geometric instances

Of course it is easy to define instances that are

not geometric.

Let X = {A, B, C, D, E, F}

Let d be given by

A B C D E F
A 0 2 4 ∞ 1 3
B 2 0 6 2 1 4
C 4 ∞ 0 1 2 1
D ∞ 2 1 0 9 1
E 1 1 2 6 0 3
F 3 4 1 1 3 0

Many approximation algorithms only work for

geometric instances because it is such an

important special case, but remember that it is

only a special case!
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Nearest Neighbour

One example of an approximation algorithm is

the following greedy algorithm known as

Nearest Neighbour (NN).

• Start at a randomly chosen vertex

• At each stage visit the closest currently

unvisited city

For an n-city instance of TRAVELLING

SALESMAN this algorithm takes time O(n2).

For any instance I, let NN(I) be the length of

the tour found by NN and let OPT(I) be the

length of the optimal tour. Then

NN(I)/OPT(I) is a measure of how good this

algorithm is on a given instance.

Unfortunately this is not very good.
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A geometric instance of NN

The best case gave a tour of length 636.28
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Starting at city 38.  Tour length is 636.28
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A geometric instance of NN

The worst case gave a tour of length 842.94
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Starting at city 12.  Tour length is 842.94
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Approximation algorithms

Theorem For any constant k > 1 there are

instances of TRAVELLING SALESMAN such

that NN(I) ≥ k OPT(I).

Even more seriously this is not just because

NN is not sufficiently sophisticated — we

cannot expect good behaviour from any

polynomial time heuristic.

Theorem Suppose A is a polynomial time

approximation algorithm for TRAVELLING

SALESMAN such that A(I) ≤ k OPT(I) for

some constant k. Then there is a polynomial

time algorithm to solve TRAVELLING

SALESMAN.

Therefore it seems hopeless to try to find

decent approximation algorithms for

TRAVELLING SALESMAN.
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Minimum spanning tree

Suppose that we have an instance I of

TRAVELLING SALESMAN that is symmetric

and satisfies the triangle inequality. Then the

following algorithm called MST is guaranteed

to find a tour that is at most twice the optimal

length.

• Find a minimum spanning tree for I

• Do a depth-first search on the tree

• Visit the vertices in order of discovery time

Then

MST(I) ≤ 2 OPT(I).

In order to see why this works, we first observe

that removing one edge from the optimal tour

yields a spanning tree for I, and therefore the

weight of the minimum spanning tree is less

than the length of the shortest tour.
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Search the tree . . .

Perform a depth first search on the minimum

spanning tree.
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. . . and take shortcuts

If we were to simply follow the path of the

depth-first search algorithm — including the

backtracking — we would walk along each

edge exactly once in each direction, creating a

tour that has length exactly twice the weight

of the minimum spanning tree, but is illegal

because it visits some vertices twice.

The simple solution is to just take “shortcuts”

according to the ordering of the vertices.
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Coalesced simple paths

The method of coalesced simple paths uses a

greedy method to build up a tour edge by

edge. At every stage the “partial tour” is a

collection of simple paths.

• Sort the edges into increasing weight

• At each stage add the lowest weight edge

possible without creating a cycle or a

vertex of degree 3.

• Join the ends of the path to form a cycle

This algorithm proceeds very much like

Kruskal’s algorithm, but the added simplicity

means that the complicated union-find data

structure is unnecessary.
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Insertion methods

There is a large class of methods called

insertion methods which maintain a closed

cycle as a partial tour and at each stage of the

procedure insert an extra vertex into the partial

tour.

Suppose that we are intending to insert the

new vertex x into the partial tour C (called C

because it is a cycle).

In turn we consider each edge {u, v} of the

partial tour C, and we find the edge such that

d(u, x) + d(x, v)− d(u, v)

is a minimum.

Then the edge {u, v} is deleted, and edges

{u, x} and {x, y} added, hence creating a tour

with one additional edge.
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Three insertion techniques

Random insertion

At each stage the next vertex x is chosen

randomly from the untouched vertices.

Nearest insertion

At each stage the vertex x is chosen to be the

one closest to C.

Farthest insertion

At each stage the vertex x is chosen to be the

one farthest from C.

(In all three insertion methods the vertex x is

chosen first and then it is inserted in the best

position.)
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Tour found by nearest insertion

Nearest insertion tours ranged from 631 to 701

on the above example.
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Example of a tour found by nearest insertion
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Tour found by farthest insertion

Farthest insertion tours ranged from 594 to

679 on the above example.
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Tour found by random insertion

Random insertion tours ranged from 607 to

667 on the above example.
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A fourth insertion technique

Cheapest insertion

This method is a bit more expensive than the

other methods in that we search through all

the edges {u, v} in C and all the vertices x /∈ C

trying to find the vertex and edge which

minimizes

d(u, x) + d(x, v)− d(u, v)

The other three methods can all be

programmed in time O(n2) whereas this

method seems to require at least an additional

factor of lgn.

Nearest insertion and cheapest insertion can be

shown to produce tours of length no greater

than twice the optimal tour length by their

close relationship to minimum spanning tree

algorithms.
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Iterative Improvement

One common feature of the tours produced by

the greedy heuristics that we have seen is that

it is immediately easy to see how they can be

improved, just by changing a few edges here

and there.

The procedure of iterative improvement refers

to the process of starting with a feasible

solution to a problem and changing it slightly

in order to improve it.

An iterative improvement algorithm involves

two things

• A rule for changing one feasible solution to

another

• A schedule for deciding which moves to

make
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Improving TRAVELLING SALESMAN tours

A basic move for TRAVELLING SALESMAN
problems involves deleting two edges in the
tour, and replacing them with two non-edges,
as follows.
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Suppose the tour runs AD, D ! C, CB,
B ! A. Then deleting AD and CB, we replace
them with AC and DB.
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2-OPT

Consider now an iterative improvement

algorithm that proceeds by examining every

pair of edges, and performing an exchange if

the tour can be improved.

This procedure must eventually terminate, and

the resulting tour is called 2-optimal.

There are more complicated “moves” that

involve deleting 3 edges and reconnecting the

tour, and in general deleting k edges and then

reconnecting the tour.

A tour that cannot be improved by a k edge

exchange is called k-optimal. In practice it is

rare to compute anything beyond 2-optimal or

3-optimal tours.
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A state space graph

We can view this process in a more abstract

sense as a heuristic search on a huge graph

called the state space graph.

We define the state space graph S(I) for an

instance of TRAVELLING SALESMAN as

follows.

The vertices of S(I) consist of all the

feasible tours for the instance I.

Two feasible tours T1 and T2 are

neighbours if they can be obtained from

each other by the edge exchange

process above.

Each vertex T has a cost c(T) associated with

it, being the length of the tour T .

To completely solve TRAVELLING

SALESMAN requires finding which of the

(n − 1)! vertices of S(I) has the lowest cost.
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Searching the state space graph

In general S(I) is so vast that it is totally

impossible to write down the entire graph.

The greedy insertion methods all provide us

with a single vertex in S(I) (a single tour), and

the iterative improvement heuristics all involve

doing a walk in S(I) moving along edges from

tour to neighbouring tour attempting to find

the lowest cost vertex.

In this type of state space searching we have

the concept of a “current” tour T and at each

stage of the search we generate a neighbour T ′

of T and decide whether the search should

proceed to T ′ or not.
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Hill-climbing

The simplest heuristic state-space search is

known as hill-climbing.

The rule for proceeding from one state to

another is very easy

• Systematically generate neighbours T ′ of T

and move to the first neighbour of lower

cost than T .

This procedure will terminate when T has no

neighbours of lower cost — in this case T is a

2-optimal tour.

An obvious variant of this is to always choose

the best move at each step.
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A local optimum

A hill-climb will always finish on a vertex of

lower cost than all its neighbours — such a

vertex is a local minimum.

Unfortunately the state space graph has an

enormous number of local minima, each of

them possibly tremendously different from the

global minimum.

If we mentally picture the state space graph as

a kind of “landscape” where costs are

represented by heights, then S(I) is a savagely

jagged landscape of enormously high

dimension.

Hill climbing merely moves directly into the

nearest local optimum and cannot proceed

from there.
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State-space for DOMINATING SET

We can apply similar methods to the graph

domination problem provided that we define

the state-space graph carefully.

Suppose that we are trying to see whether a

graph G has a dominating set of size k. Then

the “states” in the state space graph are all

the possible subsets of V (G) of size k. The

“cost” of each can be taken to be the number

of vertices not dominated by the corresponding

k-subset. The solution that we are seeking is

then a state of cost 0.

Now we must define some concept of

“neighbouring states”. In this situation a

natural way to define a neighbouring state is

the state that results from moving one of the k

vertices to a different position.

62

Heuristic search for graph domination

We can now apply the hill-climbing procedure

to this state space graph.

In this fashion the search “wanders” around

the state-space graph, but again it will

inevitably end up in a local minimum from

which there is not escape.

Hill climbing is unsatisfactory because it has no

mechanism for escaping locally optimum

solutions. Ideally we want a heuristic search

technique that tries to improve the current

solution but has some method for escaping

local optima.

Two techniques that have been proposed and

extensively investigated in the last decade or so

are

Simulated Annealing

Tabu Search
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Annealing

Annealing is a physical process used in forming

crystalline solids.

At a high temperature the solid is molten, and

the molecules are moving fast and randomly. If

the mixture is very gradually cooled, then as

the temperature drops the mixture becomes

more ordered, with molecules beginning to

align into a crystalline structure. If the cooling

is sufficiently slow, then at freezing point the

resulting solid has a perfect regular crystalline

structure.

The crystalline structure has the lowest

potential energy, so we can regard the process

as trying to find the configuration of a group

of molecules with a global minimum potential

energy.

Annealing is successful because the slow

cooling allows the physical system to escape

from local minima.
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Simulated annealing

Simulated annealing is an attempt to apply

these same principles to problems of

combinatorial optimization.

For TRAVELLING SALESMAN we regard the

optimal tour as the “crystal” for which we are

searching and the other tours, being less

perfect, as the flawed semi-molten crystals,

while for GRAPH DOMINATION we regard the

states with cost 0 (that is, genuine dominating

sets) as the “crystals”.

The overall structure of simulated annealing is:

• Randomly generate a neighbour T ′ of the

vertex T

• If c(T ′) ≤ c(T) then accept the move to T ′

• If c(T ′) > c(T) then with a certain

probability p accept the move to T ′

The probability p of accepting an uphill move is

dynamically altered throughout the algorithm.
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Uphill moves

Dynamically altering p is usually done by

maintaining a temperature variable t which is

gradually lowered throughout the operation of

the algorithm, and applying the following rules.

Suppose that we are currently at a vertex T

with a cost c(T). The randomly generated

neighbour T ′ of T has cost c(T ′) and so if the

move is made then the difference will be

∆c = c(T ′) − c(T)

Then the probability of accepting the move is

taken to be

p = exp(−∆c/t)

If ∆c < 0, then p > 1, so this corresponds to

accepting all moves to a lower cost neighbour.

Otherwise, if t is high, then −∆c/t is very small

and p ≈ 1. If t is small then −∆c/t will be large

and negative and p ≈ 0.
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Cooling schedule

Therefore at high temperatures, almost all

moves are accepted, good or bad, whereas as

the temperature reduces, fewer bad moves are

accepted and the procedure settles down

again. When t ≈ 0 then the procedure reverts

to a hill-climb.

The value of the the initial temperature and

the way in which it is reduced is called a

cooling schedule:

• Start with some initial temperature t0

• Perform N iterations at each temperature

• Reduce the temperature by a constant

multiplicative factor t ← Kt

For example the values t0 = 1, N = 1000,

K = 0.95 might be suitable.

Performance of this algorithm is highly

problem-specific and cooling schedule-specific.
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How good is it?

Simulated annealing has had success in several

areas of combinatorial optimization, particularly

in problems with continuous variables.

In general it seems to work considerably better

than hill-climbing, though it is not clear

whether it works much better than multiple

hill-climbs.

Each of these combinatorial optimization

heuristics has their own adherents, and

something akin to religious wars can erupt if

anyone is rash enough to say “X is better than

Y”.

Experimentation is fraught with problems also,

in that an empirical comparison of techniques

depends so heavily on the test problems that

almost any desired result can be convincingly

produced by careful enough choice.

Nonetheless the literature is liberally dotted

with “An empirical comparison of . . . and . . .”.
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Tabu search

The word tabu (or taboo) means something

prohibited or forbidden.

Tabu search is another combinatorial search

heuristic that combines some of the features of

hill-climbing and simulated annealing. However

it can only be used in slightly more restricted

circumstances.

Tabu search attempts to combat two obvious

weaknesses of hill-climbing and simulated

annealing — the inability of hill-climbing to

escape from local minima, and the early waste

of time in simulated annealing where the

temperature is very high and the search is

proceeding almost randomly with almost no

pressure to improve the solution quality.

Tabu search attempts to spend almost all of

its time close to local minima, while still having

the facility to escape them.
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The basic idea

The basic idea of a tabu search is that it

always maintains a tabu list detailing the last h

vertices that it has visited.

• Select the best possible neighbour T ′ of T .

• If T ′ is not on the tabu list, then move to it

and update the tabu list accordingly.

We notice that the tabu search is very

aggressive — it always seeks to move in the

best possible direction. Without a tabu list this

process would always end in a cycle of length

2, with the algorithm flipping between a local

minimum and its nearest neighbour.

The tabu list prevents the search from

immediately returning to a recently visited tour

and (hopefully) forces it to take a different

track out of that local minimum.
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Practical considerations

The main problem of tabu search is that at

each iteration it requires complete enumeration

of the neighbourhood of a vertex — this may

be prohibitively expensive.

Similarly to choosing a cooling schedule for

simulated annealing, a tabu schedule must be

chosen for tabu search. It is important to

choose the length of the tabu list very carefully

— this is again very problem-specific.

On the positive side, tabu search manages to

examine many more “close-to-optimum”

solutions than simulated annealing.

Another positive feature of tabu search is that

provided care is taken to prevent cycling, the

search can be left running for as long as

resources allow, while the length of a simulated

annealing run is usually fixed in advance.

71

Tabu search for graph domination

The best dominating sets for the football pool

graphs were largely constructed by tabu search

techniques, together with a mathematical

construction that reduces the search to smaller

but denser graphs.

There are many practical considerations in

implementing a tabu search — firstly it is

necessary to be very efficient in evaluating the

cost function on the neighbouring states.

There are also many variants on a tabu search

— for example, only searching a portion of the

neighbourhood of a given state, maybe by

concentrating on the moves that are likely to

result in an improvement rather than all

possible moves.

72



Genetic algorithms

Genetic algorithms provide an entirely different

approach to the problems of combinatorial

optimization.

Like simulated annealing, genetic algorithms

try to model a physical process that improves

“quality” — in this case the physical process is

evolution.

A genetic algorithm proceeds by maintaining a

pool containing many feasible solutions, each

with its associated fitness.

At each iteration, a new population of solutions

is created by breeding and mutation, with the

fitter solutions being more likely to procreate.
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A glimpse of GAs

Each solution is encoded as a string.

Breeding two strings involves selecting a

position at random, breaking the strings into a

head and tail at that point, and swapping tails.

This operation is referred to as cross-over:

ABCDE F GH I J K L

a b c d e f g h i j k l

ABCD e f g h i j k l

a b c d E F GH I J K L

Parents are chosen in direct proportion to their

fitness so that the fitter strings breed more

often.

Mutation involves arbitrarily altering one of the

elements of the string.

As usual there are several parameters to

fine-tune the algorithm such as population size,

mutation frequency and so on.
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GAs for combinatorial optimization?

Although GAs have their adherents it may not

be easy to adapt them successfully to

combinatorial optimization problems such as

TRAVELLING SALESMAN and GRAPH

DOMINATION.

The problem here seems to be that there is no

way one can arbitrarily combine two tours to

create a third tour — simply hacking two tours

apart and joining the bits together will not

work in general.

Similarly, it is hard to come up with a good

representation for a candidate dominating set

in such a way that arbitrary cross-over does

not destroy all its good properties.

The crucial distinction seems to be that

hill-climbing, simulated annealing and tabu

search are all local search methods whereas a

genetic algorithm is not.

Recommended reading: CLRS, Chapter 35
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Summary

1. Greedy algorithms solve optimization

problems by searching the best local

direction. They are applied in the Activity

selection problem, Huffman coding and

some graph algorithms.

2. Vertex cover, travelling salesman and the

0-1 knapsack problem are all instances of

NP-complete problems, (i.e. for which no

feasible algorithm is known).

3. A dynamic programming solution exists for

the 0-1 knapsack problem.

4. Linear programmes are problems of

optimizing a linear cost function, subject to

linear constraints. They can be applied in

many optimization problems, and may be

solved by the simplex algorithm.
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Summary cont.

5. Heuristic algorithms can be applied to

approximate optimal solutions to geometric

instances of the travelling salesman

problem.

6. Other heuristic methods include

hill-climbing, simulated annealing, tabu

search and genetic algorithms.
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The End?
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