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Introduction

Queues and stacks are restrictive — they can only access one position within
the data structure (“first” in queue, “top” of stack)

In some applications we want to access a sequence at many different positions:

• Text editor — sequence of characters, read/insert/delete at any point

• Bibliography — sequence of bibliographic entries

• Manipulation of polynomials

• List of addresses
...

In this section, we introduce the List ADT which generalises stacks and
queues.
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List Windows

We will use the word “window” to refer to a specific position in the list:

• maintain a distinction from “reference” or “index” which are specific
implementations

• maintain a distinction from “cursor” which is most commonly used as
an application of a window in editing

May be several windows, eg. . .
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Our List ADT will provide explicit operations for handling windows.

The following specification assumes that w is a Window object, defined in a
separate class.

Different window objects will be needed for different List implementations i
a List class and a companion Window class will be developed together.

Note: A window class is generally not good software engineering practice
as there is no coupling between the List and the window. Instead, modern
ADTs specify list operations in terms of iterators.
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List Specification

1. Constructors

2. List(): Initialises an empty list with two associated window positions,
before first and after last.

3. Checkers

4. isEmpty(): Returns true if the list is empty.

5. isBeforeFirst(w): True if w is over the before first position.

6. isAfterLast(w): True if w is over the after last position.

7. Manipulators

8. beforeFirst(w): Initialises w to the before first position.

9. afterLast(w): Initialises w to the after last position.

10. next(w): Throws an exception if w is over the after last position, oth-
erwise moves w to the next window position. May be after last.
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11. previous(w): Throws an exception if w over is the before first position,
otherwise moves w to the previous window position.

12. insertAfter(e,w): Throws an exception if w is over the after last posi-
tion, otherwise an extra element e is added to the list after w.

13. insertBefore(e,w): Throws an exception if w is over the before first
position, otherwise an extra element e is added to the list before w.

14. examine(w): Throws an exception if w is in the before first or after last
position, otherwise returns the element under w .

15. replace(e,w): Throws an exception if w is in the before first or after last
position, otherwise replaces the element under w with e and returns
the old element.

16. delete(w): Throws an exception if w is in the before first or after last
position, otherwise deletes and returns the element under w , and places
w over the next element.
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Simplifying Assumptions

Allowing multiple windows can introduce problems. Consider the following
use of the List ADT:

Window w1 = new Window();

Window w2 = new Window();

beforeFirst(w1); // Initialise first window

next(w1); // Place over first element

beforeFirst(w2); // Initialise second window

next(w2); // Place over first element

delete(w1); // Delete first element

Our specification doesn’t say what happens to the second window!

For now, we will assume only one window will be used at a single time.
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Block Representation

List is defined on a block (array). . .

public class ListBlock {

private Object[] block; // Holds general objects

private int before; // An index to the before first position

private int after; // iAn ndex to the after last position

Constructor

public ListBlock (int size) {

block = new Object[size];

before = -1;

after = 0;

}
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Windows

Some ADTs we have created have implicit windows — eg Queue has a “win-
dow” to the first item.

There was a fixed number of these, and they were built into the ADT imple-
mentation — eg a member variable first held an index to the block holding
the queue.

For lists, the user needs to be able to create arbitrarily many windows , we
define these as separate objects.

For the block representation, they just hold an index. . .

public class WindowBlock {

public int index;

public WindowBlock () {}

}

The index is then initialised by a call to beforeFirst or afterLast .

public void beforeFirst (WindowBlock w) {w.index = before;}
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next and previous simply increment or decrement the window posi-
tion. . .

public void next (WindowBlock w) throws OutOfBounds {

if (!isAfterLast(w)) w.index++;

else

throw new OutOfBounds("Calling next after list end.");

}

examine and replace are simple array assignments/lookups.

Insertion and deletion may require moving many elements

worst-case performance — linear in size of block
eg. insertBefore

From an ‘abstract’ point of view, the window hasn’t moved — it’s still
over the same element. However, the ‘physical’ location has changed.
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public void insertBefore (Object e, WindowBlock w) throws

OutOfBounds, Overflow {

if (!isFull()) {

if (!isBeforeFirst(w)) {

for (int i = after-1; i >= w.index; i--)

block[i+1] = block[i];

after++;

block[w.index] = e;

w.index++;

}

else throw new OutOfBounds ("Inserting before start.");

}

else throw new Overflow("Inserting in full list.");

}
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eg. delete

The window has moved from an ‘abstract’ point of view, although the ‘phys-
ical’ location is the same.

As with QUEUE, “wraparound” could be incorporated in this representation.
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Singly Linked Representation

Uses two sentinel cells for before first and after last:

• previous and next always well-defined, even from first or last element

• Constant time implementation for beforeFirst and afterLast

Empty list just has two sentinel cells. . .

public class ListLinked {

private Link before;

private Link after;

public ListLinked () {

after = new Link(null, null);

before = new Link(null, after);

}

public boolean isEmpty () {return before.successor == after;}
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Windows

public class WindowLinked {

public Link link;

public WindowLinked () {link = null;}

}

eg.

public void beforeFirst (WindowLinked w) {w.link = before;}

public void next (WindowLinked w) throws OutOfBounds {

if (!isAfterLast(w)) w.link = w.link.successor;

else

throw new OutOfBounds("Calling next after list end.");

}

Why don’t we just use a Link here?
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insertBefore and delete

Problem — need previous cell! To find this takes linear rather than
constant time.

One solution: insert after and swap items around Contrary to goal of pointers
— don’t move data unless absolutely necessary
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public void insertBefore (Object e, WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) {

w.link.successor = new Link(w.link.item, w.link.successor);

if (isAfterLast(w)) after = w.link.successor;

w.link.item = e;

w.link = w.link.successor;

}

else throw new OutOfBounds ("inserting before start of list");

}

Alternative solution: define window value to be the link to the cell pre-
vious to the cell in the window — Exercise. Will come up again in binary
trees.
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Implementing previous

To find the previous element in a singly linked list we must start at the
first sentinel cell and traverse the list to the current window, while storing
the previous position. . .

public void previous (WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) {

Link current = before.successor;

Link previous = before;

while (current != w.link) {

previous = current;

current = current.successor;

}

w.link = previous;

}

else throw new OutOfBounds ("Calling previous before start of list.");

}

This is called link coupling — linear in size of list!

Note: We have assumed (as in previous methods) that the window passed
is a valid window to this List.

In this case if this is not true, Java will throw an exception when the
while loop reaches the end of the list.
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Performance Comparisons

Operation Block Singly linked
List 1 1
isEmpty 1 1
isBeforeFirst 1 1
isAfterLast 1 1
beforeFirst 1 1
afterLast 1 1
next 1 1
previous 1 n
insertAfter n 1
insertBefore n 1
examine 1 1
replace 1 1
delete n 1

In addition to a fixed maximum length, the block representation takes
linear time for insertions and deletions.

The singly linked representation wins on all accounts except previous ,
which we address in the next sections. . .
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Doubly Linked Lists

Singly linked list: previous is linear in worst case — may have to search
through the whole list to find the previous window position.

One solution — keep references in both directions!

Called a doubly linked list.

Advantage: previous is similar to next — easy to program and constant
time.

Disadvantage: extra storage required in each cell, more references to up-
date.
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Circularly Linked Lists

The doubly linked list has two wasted pointers. If we link these round to
the other end. . .

Called a circularly linked list.

Advantages: (over doubly linked)

• Only need a reference to the first sentinel cell.

• Elegant!
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Redefine Link

public class LinkDouble {

public Object item;

public LinkDouble successor;

public LinkDouble predecessor; // extra cell

Redefine List

public class ListLinkedCircular {

private LinkDouble list; // just one reference

Code for previous

public void previous (WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) w.link = w.link.predecessor;

else throw

new OutOfBounds("calling previous before start of list ");

}

Cf. previous previous !
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Performance — List

Operation Block Singly linked Doubly linked
List 1 1 1
isEmpty 1 1 1
isBeforeFirst 1 1 1
isAfterLast 1 1 1
beforeFirst 1 1 1
afterLast 1 1 1
next 1 1 1
previous 1 n 1
insertAfter n 1 1
insertBefore n 1 1
examine 1 1 1
replace 1 1 1
delete n 1 1
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We see that the doubly linked representation has superior performance.
This needs to be weighed against the additional space overheads.

Rough rule

• previous commonly used → doubly (circularly) linked

• previous never or rarely used → singly linked

Summary

• Lists generalise stacks and queues by enabling insertion, examination,
and deletion at any point in the sequence.

• Insertion, examination, and deletion are achieved using windows on the
list.

• Explicit window manipulation is included in the specification of our
List ADT. In the next section we’ll see an example, SIMPLIST, in
which window manipulation is implicit.

• A block representation restricts the list size and results in linear time
performance for insertions and deletions.

• A singly linked representation allows arbitrary size lists, and offers
constant time performance in all operations except previous.

• Doubly (and Circularly) Linked Lists have constant time performance
on all operations but needs extra space
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