
Introduction to Data Structures

• Why study data structures?

• Collections, abstract data types (ADTs), and algorithm analysis

• More on ADTs

• What’s ahead?

1



What are Data Structures?

• Data structures are software artifacts that allow data to be stored,
organized and accessed.

• They are more high-level than computer memory (hardware) and lower-
level than databases and spreadsheets (which associate meta-data and
meaning to the stored data).

• Ultimately data structures have two core functions: put stuff in, and
take stuff out.

2



Why?

• software is complex

— more than any other man made system

— even more so in today’s highly interconnected world

• software is fragile

— smallest logical error can cause entire systems to crash

• neither you, nor your software, will work in a vacuum

• the world is unpredictable

• clients are unpredictable!

Software must be correct, efficient, easy to maintain, and reusable.

3



What will we Study?

Collections
. . . as name suggests, hold a bunch of things. . .
“nearly every nontrivial piece of software involves the use of collections”
Seen arrays — others include queues, stacks, lists, trees, maps, sets, ta-

bles. . .

4



Why so many?

Space efficiency
Time efficiency:

• store (add to collection)

• search (find an object)

• retrieve (read information)

• remove or replace

• clone (make a copy)

5



Abstract Data Types

Allow user to abstract away from implementation detail.

Consider the statement: I put my lunch in my bag and went to Uni.
What is meant by the term bag in this context?
Most likely it is a backpack, or satchel, but it could also be a hand bag,

shopping bag, sleeping bag, body bag . . . (but probably not a bean bag).
It doesn’t actually matter. To parse the statement above, we simply

understand that a bag is something that we can

1. put things in,

2. carry places, and

3. take things out.

Such a specification is an Abstract Data Type.

6



Algorithm Analysis

We will consider a number of alternative implementations for each ADT.
Which is best?

Simplicity and Clarity
All things being equal we prefer simplicity, but they rarely are. . .

Space Efficiency

• space occupied by data — overheads

• space required by algorithm (eg recursion)

— can it blow out?

7



Time Efficiency

Time performance of algorithms can vary greatly.
Finding a word in the dictionary

Algorithm 1:

• Look through each word in turn until you find a match.

Algorithm 2:

• go to half way point

• compare your word with the word found

• if < repeat on earlier half

else > repeat on later half

8



Performance

Algorithm 1 (exhaustive search) proportional to n/2
Algorithm 2 (binary search) proportional to log n

number of Algorithm 1 Algorithm 2
words max. comparisons max. comparisons

10 10 4
100 100 7
1000 1000 10
10000 10000 14
100000 100000 17
1000000 1000000 20

9



ADTs and Java

Object-oriented programming was originally based around the concept of
abstract data types.

Java classes are ideal for implementing ADTs.

ADTs require:

• Some references (variables) for holding the data

(usually hidden from the user)

• Some operations that can be performed on the data

(available to the user)

10



A class in Java has the general structure. . .

class declaration

variable declarations // data held

method declarations // operations on the data

11



Information Hiding

• Variables can be made private

— no access by users

• Methods can be made public

— used to create and manipulate data structure

This encapsulation is good programming practice
— can change

• the way the data is stored

• the way the methods are implemented

without changing the (external) functionality .

12



Advantages of ADTs

• modularity — independent development, re-use, portability, maintain-
ability, upgrading, etc

• delay decisions about final implementation

• separate concerns of application and data structure design

• information hiding (encapsulation) — access by well-defined interface

Also other OO benefits like:

• polymorphism — same operation can be applied to different types

• inheritance — subclasses adopt from parent classes

13


