
All pairs shortest path through dynamic programming

• The all pairs shortest path problem

• Dynamic programming method

• Matrix product algorithm

• Floyd-Warshall algorithm

Reading: Weiss, Sections 7.5-7.7, CLRS chapter 15

1



All-pairs shortest paths

Recall the Shortest Path Problem.
Now we turn our attention to constructing a complete table of short-

est distances, which must contain the shortest distance between any pair of
vertices.

If the graph has no negative edge weights then we could simply make V
runs of Dijkstra’s algorithm, at a total cost of O(V E lg V ), whereas if there
are negative edge weights then we could make V runs of the Bellman-Ford
algorithm at a total cost of O(V 2E).

The two algorithms we shall examine both use the adjacency matrix rep-
resentation of the graph, hence are most suitable for dense graphs. Recall
that for a weighted graph the weighted adjacency matrix A has weight(i, j)
as its ij-entry, where weight(i, j) =∞ if i and j are not adjacent.

2



A dynamic programming method

Dynamic programming is a general algorithmic technique for solving prob-
lems that can be characterised by two features:

• The problem is broken down into a collection of smaller subproblems

• The solution is built up from the stored values of the solutions to all
of the subproblems

For the all-pairs shortest paths problem we define the simpler problem to
be

“What is the length of the shortest path from vertex i to j that uses at
most m edges?”

We shall solve this for m = 1, then use that solution to solve for m = 2,
and so on . . .

3



The initial step

We shall let d
(m)
ij denote the distance from vertex i to vertex j along a

path that uses at most m edges, and define D(m) to be the matrix whose
ij-entry is the value d

(m)
ij .

As a shortest path between any two vertices can contain at most V − 1
edges, the matrix D(V−1) contains the table of all-pairs shortest paths.

Our overall plan therefore is to use D(1) to compute D(2), then use D(2)

to compute D(3) and so on.
The case m = 1
Now the matrix D(1) is easy to compute — the length of a shortest path

using at most one edge from i to j is simply the weight of the edge from i to
j. Therefore D(1) is just the adjacency matrix A.

4



The inductive step

What is the smallest weight of the path from vertex i to vertex j that
uses at most m edges? Now a path using at most m edges can either be

1. A path using less than m edges

2. A path using exactly m edges, composed of a path using m−1 edges from
i to an auxiliary vertex k and the edge (k, j).

We shall take the entry d
(m)
ij to be the lowest weight path from the above

choices.
Therefore we get

d
(m)
ij = min

(
d
(m−1)
ij , min

1≤k≤V
{d(m−1)

ik + w(k, j)}
)

= min
1≤k≤V

{d(m−1)
ik + w(k, j)}

5



Example

Consider the weighted graph with the following weighted adjacency ma-
trix:

A = D(1) =


0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0


Let us see how to compute an entry in D(2), suppose we are interested in

the (1, 3) entry:

• 1→ 1→ 3 has cost 0 + 11 = 11

• 1→ 2→ 3 has cost ∞+ 4 =∞

• 1→ 3→ 3 has cost 11 + 0 = 11

• 1→ 4→ 3 has cost 2 + 6 = 8

• 1→ 5→ 3 has cost 6 + 6 = 12

The minimum of all of these is 8, hence the (1, 3) entry of D(2) is set to
8.

6



Computing D(2)


0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0




0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

 =


0 4 8 2 5
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3
16 ∞ 6 ∞ 0


If we multiply two matrices AB = C, then we compute

cij =
k=V∑
k=1

aikbkj

If we replace the multiplication aikbkj by addition aik + bkj and replace sum-
mation Σ by the minimum min then we get

cij =
k=V
min
k=1

aik + bkj

which is precisely the operation we are performing to calculate our matrices.

7



The remaining matrices

Proceeding to compute D(3) from D(2) and A, and then D(4) from D(3)

and A we get:

D(3) =


0 4 8 2 5

1 0 4 3 6

10 14 0 12 15
3 2 6 0 3

16 ∞ 6 18 0

 D(4) =


0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3

16 20 6 18 0



8



A new matrix “product”

Recall the method for computing d
(m)
ij , the (i, j) entry of the matrix D(m)

using the method similar to matrix multiplication.

d
(m)
ij ←∞

for k = 1 to V do

d
(m)
ij = min(d

(m)
ij , d

(m−1)
ik + w(k, j))

end for

Let us use ? to denote this new matrix product.
Then we have

D(m) = D(m−1) ? A

Hence it is an easy matter to see that we can compute as follows:

D(2) = A ? A D(3) = D(2) ? A . . .

9



Complexity of this method

The time taken for this method is easily seen to be O(V 4) as it performs
V matrix “multiplications” each of which involves a triply nested for loop
with each variable running from 1 to V .

However we can reduce the complexity of the algorithm by remembering
that we do not need to compute all the intermediate products D(1), D(2)

and so on, but we are only interested in D(V−1). Therefore we can simply
compute:

D(2) = A ? A

D(4) = D(2) ? D(2)

D(8) = D(4) ? D(4)

Therefore we only need to do this operation at most lg V times before we
reach the matrix we want. The time required is therefore actually O(V 3dlg V e).

10



Floyd-Warshall

The Floyd-Warshall algorithm uses a different dynamic programming for-
malism.

For this algorithm we shall define d
(k)
ij to be the length of the shortest

path from i to j whose intermediate vertices all lie in the set {1, . . . , k}.
As before, we shall define D(k) to be the matrix whose (i, j) entry is d

(k)
ij .

The initial case
What is the matrix D(0) — the entry d

(0)
ij is the length of the shortest

path from i to j with no intermediate vertices. Therefore D(0) is simply the
adjacency matrix A.

11



The inductive step

For the inductive step we assume that we have constructed already the
matrix D(k−1) and wish to use it to construct the matrix D(k).

Let us consider all the paths from i to j whose intermediate vertices lie
in {1, 2, . . . , k}. There are two possibilities for such paths

(1) The path does not use vertex k

(2) The path does use vertex k

The shortest possible length of all the paths in category (1) is given by

d
(k−1)
ij which we already know.

If the path does use vertex k then it must go from vertex i to k and
then proceed on to j, and the length of the shortest path in this category is
d
(k−1)
ik + d

(k−1)
kj .

12



The overall algorithm

The overall algorithm is then simply a matter of running V times through
a loop, with each entry being assigned as the minimum of two possibilities.
Therefore the overall complexity of the algorithm is just O(V 3).

D(0) ← A
for k = 1 to V do

for i = 1 to V do
for j = 1 to V do

d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj )

end for j
end for i

end for k

At the end of the procedure we have the matrix D(V ) whose (i, j) entry
contains the length of the shortest path from i to j, all of whose vertices lie
in {1, 2, . . . , V } — in other words, the shortest path in total.

13



Example

Consider the weighted directed graph with the following adjacency ma-
trix:

D(0) =


0 ∞ 11 2 6
1 0 4 ∞ ∞
10 ∞ 0 ∞ ∞
∞ 2 6 0 3
∞ ∞ 6 ∞ 0

 D(1) =


0 ∞ 11 2 6
1 0 4
10 ∞ 0
∞ 2 6 0 3
∞ ∞ 6 ∞ 0


To find the (2, 4) entry of this matrix we have to consider the paths

through the vertex 1 — is there a path from 2 – 1 – 4 that has a better value
than the current path? If so, then that entry is updated.

14



The entire sequence of matrices

D(2) =


0 ∞ 11 2 6

1 0 4 3 7

10 ∞ 0 12 16

3 2 6 0 3
∞ ∞ 6 ∞ 0

 D(3) =


0 ∞ 11 2 6
1 0 4 3 7
10 ∞ 0 12 16
3 2 6 0 3

16 ∞ 6 18 0



D(4) =


0 4 8 2 5

1 0 4 3 6

10 14 0 12 15
3 2 6 0 3

16 20 6 18 0

 D(5) =


0 4 8 2 5
1 0 4 3 6
10 14 0 12 15
3 2 6 0 3
16 20 6 18 0



15



Finding the actual shortest paths

In both of these algorithms we have not addressed the question of actually
finding the paths themselves.

For the Floyd-Warshall algorithm this is achieved by constructing a fur-
ther sequence of arrays P (k) whose (i, j) entry contains a predecessor of j
on the path from i to j. As the entries are updated the predecessors will
change — if the matrix entry is not changed then the predecessor does not
change, but if the entry does change, because the path originally from i to j
becomes re-routed through the vertex k, then the predecessor of j becomes
the predecessor of j on the path from k to j.

16


