All pairs shortest path through dynamic programming

- The all pairs shortest path problem
- Dynamic programming method
- Matrix product algorithm
- Floyd-Warshall algorithm

All-pairs shortest paths

Recall the Shortest Path Problem.
Now we turn our attention to constructing a complete table of shortest distances, which must contain the shortest distance between any pair of vertices.

If the graph has no negative edge weights then we could simply make V runs of Dijkstra's algorithm, at a total cost of $O(V E \lg V)$, whereas if there are negative edge weights then we could make V runs of the Bellman-Ford algorithm at a total cost of $O\left(V^{2} E\right)$.

The two algorithms we shall examine both use the adjacency matrix representation of the graph, hence are most suitable for dense graphs. Recall that for a weighted graph the weighted adjacency matrix A has weight (i, j) as its $i j$-entry, where weight $(i, j)=\infty$ if i and j are not adjacent.

A dynamic programming method

Dynamic programming is a general algorithmic technique for solving problems that can be characterised by two features:

- The problem is broken down into a collection of smaller subproblems
- The solution is built up from the stored values of the solutions to all of the subproblems

For the all-pairs shortest paths problem we define the simpler problem to be
"What is the length of the shortest path from vertex i to j that uses at most m edges?"

We shall solve this for $m=1$, then use that solution to solve for $m=2$, and so on ...

The initial step

We shall let $d_{i j}^{(m)}$ denote the distance from vertex i to vertex j along a path that uses at most m edges, and define $D^{(m)}$ to be the matrix whose $i j$-entry is the value $d_{i j}^{(m)}$.

As a shortest path between any two vertices can contain at most $V-1$ edges, the matrix $D^{(V-1)}$ contains the table of all-pairs shortest paths.

Our overall plan therefore is to use $D^{(1)}$ to compute $D^{(2)}$, then use $D^{(2)}$ to compute $D^{(3)}$ and so on.

The case $m=1$
Now the matrix $D^{(1)}$ is easy to compute - the length of a shortest path using at most one edge from i to j is simply the weight of the edge from i to j. Therefore $D^{(1)}$ is just the adjacency matrix A.

The inductive step

What is the smallest weight of the path from vertex i to vertex j that uses at most m edges? Now a path using at most m edges can either be

1. A path using less than m edges
2. A path using exactly m edges, composed of a path using $m-1$ edges from i to an auxiliary vertex k and the edge (k, j).

We shall take the entry $d_{i j}^{(m)}$ to be the lowest weight path from the above choices.

Therefore we get

$$
\begin{gathered}
d_{i j}^{(m)}=\min \left(d_{i j}^{(m-1)}, \min _{1 \leq k \leq V}\left\{d_{i k}^{(m-1)}+w(k, j)\right\}\right) \\
=\min _{1 \leq k \leq V}\left\{d_{i k}^{(m-1)}+w(k, j)\right\}
\end{gathered}
$$

Example

Consider the weighted graph with the following weighted adjacency matrix:

$$
A=D^{(1)}=\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{array}\right)
$$

Let us see how to compute an entry in $D^{(2)}$, suppose we are interested in the $(1,3)$ entry:

- $1 \rightarrow 1 \rightarrow 3$ has cost $0+11=11$
- $1 \rightarrow 2 \rightarrow 3$ has cost $\infty+4=\infty$
- $1 \rightarrow 3 \rightarrow 3$ has cost $11+0=11$
- $1 \rightarrow 4 \rightarrow 3$ has cost $2+6=8$
- $1 \rightarrow 5 \rightarrow 3$ has cost $6+6=12$

The minimum of all of these is 8 , hence the $(1,3)$ entry of $D^{(2)}$ is set to 8.

$$
\begin{gathered}
\text { Computing } D^{(2)} \\
\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{array}\right)\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 7 \\
10 & \infty & 0 & 12 & 16 \\
3 & 2 & 6 & 0 & 3 \\
16 & \infty & 6 & \infty & 0
\end{array}\right)
\end{gathered}
$$

If we multiply two matrices $A B=C$, then we compute

$$
c_{i j}=\sum_{k=1}^{k=V} a_{i k} b_{k j}
$$

If we replace the multiplication $a_{i k} b_{k j}$ by addition $a_{i k}+b_{k j}$ and replace summation Σ by the minimum min then we get

$$
c_{i j}=\min _{k=1}^{k=V} a_{i k}+b_{k j}
$$

which is precisely the operation we are performing to calculate our matrices.

The remaining matrices

Proceeding to compute $D^{(3)}$ from $D^{(2)}$ and A, and then $D^{(4)}$ from $D^{(3)}$ and A we get:

$$
D^{(3)}=\left(\begin{array}{ccccc}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & \boxed{15} \\
3 & 2 & 6 & 0 & 3 \\
16 & \infty & 6 & 18 & 0
\end{array}\right) \quad D^{(4)}=\left(\begin{array}{ccccc}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & 15 \\
3 & 2 & 6 & 0 & 3 \\
16 & 20 & 6 & 18 & 0
\end{array}\right)
$$

A new matrix "product"

Recall the method for computing $d_{i j}^{(m)}$, the (i, j) entry of the matrix $D^{(m)}$ using the method similar to matrix multiplication.
$d_{i j}^{(m)} \leftarrow \infty$
for $k=1$ to V do
$d_{i j}^{(m)}=\min \left(d_{i j}^{(m)}, d_{i k}^{(m-1)}+w(k, j)\right)$
end for
Let us use \star to denote this new matrix product.
Then we have

$$
D^{(m)}=D^{(m-1)} \star A
$$

Hence it is an easy matter to see that we can compute as follows:

$$
D^{(2)}=A \star A \quad D^{(3)}=D^{(2)} \star A \ldots
$$

Complexity of this method

The time taken for this method is easily seen to be $O\left(V^{4}\right)$ as it performs V matrix "multiplications" each of which involves a triply nested for loop with each variable running from 1 to V.

However we can reduce the complexity of the algorithm by remembering that we do not need to compute all the intermediate products $D^{(1)}$, $D^{(2)}$ and so on, but we are only interested in $D^{(V-1)}$. Therefore we can simply compute:

$$
\begin{gathered}
D^{(2)}=A \star A \\
D^{(4)}=D^{(2)} \star D^{(2)} \\
D^{(8)}=D^{(4)} \star D^{(4)}
\end{gathered}
$$

Therefore we only need to do this operation at most $\lg V$ times before we reach the matrix we want. The time required is therefore actually $O\left(V^{3}\lceil\lg V\rceil\right)$.

Floyd-Warshall

The Floyd-Warshall algorithm uses a different dynamic programming formalism.

For this algorithm we shall define $d_{i j}^{(k)}$ to be the length of the shortest path from i to j whose intermediate vertices all lie in the set $\{1, \ldots, k\}$.

As before, we shall define $D^{(k)}$ to be the matrix whose (i, j) entry is $d_{i j}^{(k)}$. The initial case
What is the matrix $D^{(0)}$ - the entry $d_{i j}^{(0)}$ is the length of the shortest path from i to j with no intermediate vertices. Therefore $D^{(0)}$ is simply the adjacency matrix A.

The inductive step

For the inductive step we assume that we have constructed already the matrix $D^{(k-1)}$ and wish to use it to construct the matrix $D^{(k)}$.

Let us consider all the paths from i to j whose intermediate vertices lie in $\{1,2, \ldots, k\}$. There are two possibilities for such paths
(1) The path does not use vertex k
(2) The path does use vertex k

The shortest possible length of all the paths in category (1) is given by $d_{i j}^{(k-1)}$ which we already know.

If the path does use vertex k then it must go from vertex i to k and then proceed on to j, and the length of the shortest path in this category is $d_{i k}^{(k-1)}+d_{k j}^{(k-1)}$.

The overall algorithm

The overall algorithm is then simply a matter of running V times through a loop, with each entry being assigned as the minimum of two possibilities. Therefore the overall complexity of the algorithm is just $O\left(V^{3}\right)$.

```
\(D^{(0)} \leftarrow A\)
for \(k=1\) to \(V\) do
    for \(i=1\) to \(V\) do
        for \(j=1\) to \(V\) do
            \(d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
        end for \(j\)
    end for \(i\)
end for \(k\)
```

At the end of the procedure we have the matrix $D^{(V)}$ whose (i, j) entry contains the length of the shortest path from i to j, all of whose vertices lie in $\{1,2, \ldots, V\}$ - in other words, the shortest path in total.

Example

Consider the weighted directed graph with the following adjacency matrix:

$$
D^{(0)}=\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \infty & \infty \\
10 & \infty & 0 & \infty & \infty \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{array}\right) \quad D^{(1)}=\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & & \\
10 & \infty & 0 & & \\
\infty & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{array}\right)
$$

To find the $(2,4)$ entry of this matrix we have to consider the paths through the vertex 1 - is there a path from 2-1-4 that has a better value than the current path? If so, then that entry is updated.

The entire sequence of matrices

$$
\begin{aligned}
D^{(2)} & =\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & \boxed{3} & \boxed{7} \\
10 & \infty & 0 & \boxed{12} & \boxed{16} \\
\left.\begin{array}{|ccccc}
3 & 2 & 6 & 0 & 3 \\
\infty & \infty & 6 & \infty & 0
\end{array}\right) & D^{(3)}=\left(\begin{array}{ccccc}
0 & \infty & 11 & 2 & 6 \\
1 & 0 & 4 & 3 & 7 \\
10 & \infty & 0 & 12 & 16 \\
3 & 2 & 6 & 0 & 3 \\
16 & \infty & 6 & 18 & 0
\end{array}\right) \\
D^{(4)} & =\left(\begin{array}{ccccc}
0 & \boxed{4} & \boxed{8} & 2 & \boxed{5} \\
1 & 0 & 4 & 3 & \boxed{6} \\
10 & 14 & 0 & 12 & \boxed{15} \\
3 & 2 & 6 & 0 & 3 \\
16 & 20 & 6 & 18 & 0
\end{array}\right) & D^{(5)}=\left(\begin{array}{ccccc}
0 & 4 & 8 & 2 & 5 \\
1 & 0 & 4 & 3 & 6 \\
10 & 14 & 0 & 12 & 15 \\
3 & 2 & 6 & 0 & 3 \\
16 & 20 & 6 & 18 & 0
\end{array}\right)
\end{array}, .\right.
\end{aligned}
$$

Finding the actual shortest paths

In both of these algorithms we have not addressed the question of actually finding the paths themselves.

For the Floyd-Warshall algorithm this is achieved by constructing a further sequence of arrays $P^{(k)}$ whose (i, j) entry contains a predecessor of j on the path from i to j. As the entries are updated the predecessors will change - if the matrix entry is not changed then the predecessor does not change, but if the entry does change, because the path originally from i to j becomes re-routed through the vertex k, then the predecessor of j becomes the predecessor of j on the path from k to j.

