
Tree and Graph Traversals

• Tree traversals

• Bredth First Search

• Depth First Search

• Topological Sort

Reading: Weiss Section 18.4
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Tree Traversals

Why traverse?

• search for a particular item

• test equality (isomorphism) same values, same relative positions, not
worried about same memory cells etc

• copy

• create e.g. from expression

• display

We’ll consider two of the simplest and most common techniques:

depth-first — follow branches from root to leaves

breadth-first (level-order) — visit nodes level by level
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Depth-first Traversal

Preorder Traversal: Common garden “left to right”, “backtracking”, depth-
first search!

if(!t.isEmpty()) {
visit root of t;
perform preorder traversal of left subtree;
perform preorder traversal of right subtree;

}

(Generates a prefix expression
+×+ 1 2 3−× 4 5 6
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Postorder Traversal

if(!t.isEmpty()) {
perform postorder traversal of left subtree;
perform postorder traversal of right subtree;
visit root of t;

}

(Generates a postfix expression

1 2 + 3× 4 5× 6−+

Also non-ambiguous — as used by, eg. HP calculators.)
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Inorder Traversal

if(!t.isEmpty()) {
perform inorder traversal of left subtree;
visit root of t;
perform inorder traversal of right subtree;

}

(Generates an infix expression

1 + 2× 3 + 4× 5− 6

Common, easy to read, but ambiguous.
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Level-order (Breadth-first) Traversal

Starting at root, visit nodes level by level (left to right):

Doesn’t suit recursive approach. Have to jump from subtree to subtree.

• need to keep track of subtrees yet to be visited — ie need a data
structure to hold (windows to) subtrees (or Orchard)

• each internal node visited spawns two new subtrees

• new subtrees visited only after those already waiting

→ Queue of (windows to) subtrees!
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Algorithm

place tree (root window) in empty queue q;
while (!q.isEmpty()) {

dequeue first item;
if (!external node) {

visit its root node;
enqueue left subtree (root window);
enqueue right subtree (root window);

}
}
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Traversal Analysis

Time

The traversals we have outlined all take O(n) time for a binary tree of size
n.

Since all n nodes must be visited, we require O(n) time
→ asymptotic performance cannot be improved.
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Space

Depth-first : Recursive implementation requires memory (from Java’s local
variable stack) for each method call proportional to height of tree

• worst case: skinny, size n implies height n

• expected case: much better (depends on distribution considered — see
Wood Section 5.3.3) eg equiprob all binary trees, binary search trees,
. . .

• best case: exercise. . . perfect tree, log2n

Iterative implementation is also possible.
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Level-order : Require memory for queue.

Depends on tree width — maximum number of nodes on a single level.

Maximum length of queue is bounded by twice the width.

• best case: skinny, width 2

• worst case: exercise. . . perfect, width n
2
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Breadth-first graph search

A Bredth-first search in a graph is a little more complicated than a level-
order traversal of a tree, because we must make sure that we do not visit the
same node twice.

Breadth-first search is a simple but extremely important technique for search-
ing a graph. This search technique starts from a given vertex v and constructs
a spanning tree for G, called the breadth-first tree. It uses a (first-in, first-out)
queue as its main data structure.

Following CLRS (section 22.2), as the search progresses, we will divide the
vertices of the graph into three categories, black vertices which are the vertices
that have been fully examined and incorporated into the tree, grey vertices
which are the vertices that have been seen (because they are adjacent to a
tree vertex) and placed on the queue, and white vertices, which have not yet
been examined.
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Queues

Recall that a queue is a first-in-first-out buffer.

Items are pushed (or enqueued) onto the end of the queue, and items can be
popped (or dequeued) from the front of the queue.

A Queue is commonly implemented using either a block representation, or a
linked representation.

We will assume that the push and pop operations can be performed in con-
stant time. You may also assume that we can examine the first element of
the queue, and decide if the queue is empty, all in constant time (i.e. O(1)).
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Breadth-first search initialization

The final breadth-first tree will be stored as an array called π where π[x] is
the immediate parent of x in the spanning tree. Of course, as v is the root
of this tree, π[v] will remain undefined (or nil in CLRS).

To initialize the search we mark the colour of every vertex as white and the
queue is empty. Then the first step is to mark the colour of v to be grey, put
π[v] to be undefined.
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Breadth-first search repetitive step

Then the following procedure is repeated until the queue, Q, is empty.

procedure BFS(v)
Push v on to the tail of Q
while Q is not empty

Pop vertex w from the head of Q
for each vertex x adjacent to w do

if colour[x] is white then
π[x]← w
colour[x] ← grey
Push x on to the tail of Q

end if
end for
colour[w] ← black

end while

At the end of the search, every vertex in the graph will have colour black and
the parent or predecessor array π will contain the details of the breadth-first
search tree.
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Example of breadth-first search
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Head

↓
queue 1

x colour[x] π[x]
1 grey undef
2 white
3 white
4 white
5 white
6 white
7 white
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After visiting vertex 1
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↓
queue 1 2

x colour[x] π[x]
1 black undef
2 grey 1
3 white
4 white
5 white
6 white
7 white
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After visiting vertex 2
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Head

↓
queue 1 2 3 5

x colour[x] π[x]
1 black undef
2 black 1
3 grey 2
4 white
5 grey 2
6 white
7 white
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After visiting vertex 3
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Head

↓
queue 1 2 3 5 6

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 white
5 grey 2
6 grey 3
7 white
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After visiting vertex 5
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Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 grey 5
5 black 2
6 grey 3
7 grey 5
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After visiting vertex 6
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Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 grey 5
5 black 2
6 black 3
7 grey 5
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After visiting vertex 4
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Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 black 5
5 black 2
6 black 3
7 grey 5
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After visiting vertex 7
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Head

↓
queue 1 2 3 5 6 4 7

x colour[x] π[x]
1 black undef
2 black 1
3 black 2
4 black 5
5 black 2
6 black 3
7 black 5
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At termination

At the termination of breadth-first search every vertex in the same connected
component as v is a black vertex and the array π contains details of a spanning
tree for that component — the breadth-first tree.

Time analysis

During the breadth-first search each vertex is enqueued once and dequeued
once. As each enqueueing/dequeueing operation takes constant time, the
queue manipulation takes Θ(V ) time. At the time the vertex is dequeued,
the adjacency list of that vertex is completely examined. Therefore we take
Θ(E) time examining all the adjacency lists and the total time is Θ(V +E).
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Uses of BFS

Breadth-first search is particularly useful for certain simple tasks such as
determining whether a graph is connected, or finding the distance between
two vertices.

The vertices of G are examined in order of increasing distance from v — first
v, then its neighbours, then the vertices at distance 2 from v and so on. The
spanning tree constructed provides a shortest path from any vertex back to
v just by following the array π.

Therefore it is simple to modify the breadth-first search to provide an array
of distances dist where dist[u] is the distance of the vertex u from the source
vertex v.
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Breadth-first search finding distances

To initialize the search we mark the colour of every vertex as white and the
queue is empty. Then the first step is to mark the colour of v to be grey, set
π[v] to be undefined, set dist[v] to be 0, and add v to the queue, Q. Then we
repeat the following procedure.

while Q is not empty
Pop vertex w from the head of Q
for each vertex x adjacent to w do

if colour[x] is white then
dist[x] ← dist[w]+1
π[x]← w
colour[x] ← grey
Push x on to the tail of Q

end if
end for
colour[w] ← black

end while
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Depth-first graph search

Depth-first search is another important technique for searching a graph. Sim-
ilarly to breadth-first search it also computes a spanning tree for the graph,
but the tree is very different.

The structure of depth-first search is naturally recursive so we will give a
recursive description of it. Nevertheless it is useful and important to consider
the non-recursive implementation of the search.

The fundamental idea behind depth-first search is to visit the next unvisited
vertex, thus extending the current path as far as possible. When the search
gets stuck in a “corner” we back up along the path until a new avenue presents
itself (this is called backtracking).
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Basic recursive depth-first search

The following recursive program computes the depth-first search tree for a
graph G starting from the source vertex v.

To initialize the search we mark the colour of every vertex as white. Then
we call the recursive routine DFS(v) where v is the source vertex.

procedure DFS(w)
colour[w] ← grey
for each vertex x adjacent to w do

if colour[x] is white then
π[x] ← w
DFS(x)

end if
end for
colour[w] ← black

At the end of this depth-first search procedure we have produced a spanning
tree containing every vertex in the connected component containing v.
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A Non-recursive DFS

A non-recursive DFS requires a stack to record the previously visited vertices.

procedure DFS(w)
initialize stack S
push w onto S
while S not empty do

x← pop off S
if colour[x]=white then

colour[x] ← black
for each vertex y adjacent to x do

if colour[y] is white then
push y onto S
π[y] ← x

end if
end for

end if
end while
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Example of depth-first search
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x colour[x] π[x]
1 white undef
2 white
3 white
4 white
5 white
6 white
7 white
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Immediately prior to calling DFS(2)
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x colour[x] π[x]
1 grey undef
2 white 1
3 white
4 white
5 white
6 white
7 white
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Immediately prior to calling DFS(3)
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x colour[x] π[x]
1 grey undef
2 grey 1
3 white 2
4 white
5 white
6 white
7 white
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Immediately prior to calling DFS(5)
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x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 white
5 white 3
6 white
7 white
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Immediately prior to calling DFS(4)
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x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 white 5
5 grey 3
6 white
7 white
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Immediately prior to calling DFS(6)

Now the call to DFS(4) actually finishes without making any more recursive
calls so we return to examining the neighbours of vertex 5, the next of which
is vertex 6.
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x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 black 5
5 grey 3
6 white 5
7 white

34



Immediately prior to calling DFS(7)
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x colour[x] π[x]
1 grey undef
2 grey 1
3 grey 2
4 black 5
5 grey 3
6 grey 5
7 white 6
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The depth-first search tree

After completion of the search we can draw the depth-first search tree for
this graph:
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In this picture the slightly thicker straight edges are the tree edges (see
later) and the remaining edges are the back edges — the back edges arise
when we examine an edge (u, v) and discover that its endpoint v no longer
has the colour white
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Analysis of DFS

The running time of DFS is easy to analyse as follows.

First we observe that the routine DFS(w) is called exactly once for each
vertex w; during the execution of this routine we perform only constant time
array accesses, and run through the adjacency list of w once.

Running through the adjacency list of each vertex exactly once takes O(E)
time overall, and hence the total time taken is O(V + E).

In fact, we can say more and observe that because every vertex and every
edge are examined precisely once in both BFS and DFS, the time taken is
O(V + E).
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Discovery and finish times

The operation of depth-first search actually gives us more information than
simply the depth-first search tree; we can assign two times to each vertex.

procedure DFS(w)
colour[w] ← grey
discovery[w] ← time
time ← time+1
for each vertex x adjacent to w do

if colour[x] is white then
π[x] ← w
DFS(x)

end if
end for
colour[w] ← black
finish[w] ← time
time ← time+1
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The parenthesis property

This assigns to each vertex a discovery time, which is the time at which
it is first discovered, and a finish time, which is the time at which all its
neighbours have been searched and it no longer plays any further role in the
search.

The discovery and finish times satisfy a property called the parenthesis prop-
erty.

Imagine writing down an expression consisting entirely of labelled parenthe-
ses — at the time of discovering vertex u we open a parenthesis (u and a the
time of finishing with u we close the parenthesis u).

Then the resulting expression is a well-formed expression with correctly
nested parentheses.

For our example depth-first search we get:

(1 (2 (3 (4 (5 5) (6 (7 7) 6) 4) 3) 2) 1)
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Depth-first search for directed graphs

A depth-first search on an undirected graph produces a classification of the
edges of the graph into tree edges, or back edges. For a directed graph, there
are further possibilities. The same depth-first search algorithm can be used
to classify the edges into four types:

tree edges If the procedure DFS(u) calls DFS(v) then (u, v) is a tree edge

back edges If the procedure DFS(u) explores the edge (u, v) but finds that
v is an already visited ancestor of u, then (u, v) is a back edge

forward edges If the procedure DFS(u) explores the edge (u, v) but finds
that v is an already visited descendant of u, then (u, v) is a forward
edge

cross edges All other edges are cross-edges
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Topological sort

We shall consider a classic simple application of depth-first search.

Definition A directed acyclic graph (dag) is a directed graph with no directed
cycles.

Theorem In a depth-first search of a dag there are no back edges.

Consider now some complicated process in which various jobs must be com-
pleted before others are started. We can model this by a graph D where the
vertices are the jobs to be completed and there is an edge from job u to job
v if job u must be completed before job v is started. Our aim is to find some
linear ordering of the jobs such that they can be completed without violating
any of the constraints.

This is called finding a topological sort of the dag D.
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Example of a dag to be topologically sorted

For example, consider this dag describing the stages of getting dressed and
the dependency between items of clothing (from CLRS, page 550).

underpants

trousers

belt

jacket

tie

shirt

shoes

socks

watch

What is the appropriate linear order in which to do these jobs so that all the
precedences are satisfied.
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Algorithm for TOPOLOGICAL SORT

The algorithm for topological sort is an extremely simple application of
depth-first search.

Algorithm

Apply the depth-first search procedure to find the finishing times of each
vertex. As each vertex is finished, put it onto the front of a linked list.

At the end of the depth-first search the linked list will contain the vertices
in topologically sorted order.
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Doing the topological sort

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

@�

@�

@�

@�

@�

�@

�@

�@

@
�

@
�

@
�

�
@

@
�

�
@

@
�

�
@

�
@

@
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

44



After the first depth-first search
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Notice that there is a component that has not been reached by the depth-first
search.
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After the entire search
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The final topological sort is:
O −N − A−B − C −G− F − J −K − L− P − I −M − E −D −H

46



Analysis and correctness

Time analysis of the algorithm is very easy — to the Θ(V +E) time for the
depth-first search we must add Θ(V ) time for the manipulation of the linked
list. Therefore the total time taken is again Θ(V + E).

Proof of topological sort

Suppose DFS has calculated the finish times of a dag G = (V,E). For any
pair of adjacent vertices u, v ∈ V (implying (u, v) ∈ E) then we just need to
show f [v] < f [u] (the destination vertex v must finish first).

For each edge (u, v) explored by DFS of G consider the colour of vertex v.

GREY: v can never be grey since v should therefore be an ancestor of u and
so the graph would be cyclic.
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Proof (contd)

WHITE: v is a descendant of u so we will set its time now but we are still
exploring u so we will set its finished time at some point in the future (and
so therefore f [v] < f [u]). (refer back to the psuedocode).

BLACK: v has already been visited and so its finish time must have been
set earlier, whereas we are still exploring u and so we will set its finish time
in the future (and so again f [v] < f [u]).

Since for every edge in G there are two possible destination vertex colours
and in each case we can show f [v] < f [u], we have shown that this property
applies to every connected vertex in G.

See CLRS (theorem 22.11) for a more thorough treatment.
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Other uses for DFS

DFS is the standard algorithmic method for solving the following two prob-
lems:

Strongly connected components In a directed graph D a strongly con-
nected component is a maximal subset S of the vertices such that for any
two vertices u, v ∈ S there is a directed path from u to v and from v to u.

Depth-first search can be used on a digraph to find strongly connected com-
ponents in time Θ(V + E).

Articulation points In a connected, undirected graph, an articulation point
is a vertex whose removal disconnects the graph.

Depth-first search can be used on a graph to find all the articulation points
in time Θ(V + E).

49



Summary

1. Searching may occur breadth first (BFS) or depth first (DFS).

2. DFS and BFS create a spanning tree from any graph.

3. BFS visits the vertices nearest to the source first. It can be used to
determine whether a graph is connected.

4. DFS visits the vertices furtherest to the source first. It can be used to
perform a topological sort.
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