
Performance Analysis 1: Introduction

• Types of performance measurement

– empirical

– analytical

• An example of analytical analysis using Queue

• Introduction to growth rates

Reading: Weiss Chapter 5.

1



Types of Performance Measurement

Empirical measurement

We will see that the most efficient queue ADT to use depends on the
program that uses it — which operations are used most often.

If we have access to the program(s), we may be able to measure the
performance in those programs, on real data — called evaluation in context.

This is the “get yer hands dirty” approach. Run the system with real-
world input and observe, or monitor (automatically), the results.

Can compare data structures on the same problems (same machine, same
compiler, etc)
→ benchmark programs

• Useful if test input is close to expected input.

• Not much use if we are developing eg a library of modules for use in
many different contexts

In some cases, it is not feasible to test a programme “in the field” (e.g.
nuclear weapons systems). Here, we may construct a (computer) model of
the system and evaluate performance with simulated data.

A computer program normally acts as its own model — run on simulated
data (often generated using pseudo-random numbers).

However, a simplified model may be built or the program modified to fit
the simulated data.

2



Advantages

• nondestructive

• cheap

• fast

• reproducible

Disadvantages

• only as good as the simulations

• can never be sure it matches reality Story about comp scientist in charge
of US defence

3



Analytical Measurement

Construct a mathematical or theoretical model — use theoretical tech-
niques to estimate system performance.

Usually

• coarse estimates

• growth rates, complexity classes rather than ‘actual’ time

• worst case or average case

But. . . !

• fundamental view of behaviour — less susceptible to

– speed of hardware, number of other processes running, etc

– choice of data sets

– unrepresentative examples, spurious responses at least in average
case

• gives a better understanding of the problems

– why is it slow?

– could it be improved?

We will concentrate on analytical analyses.

4



Example: A Basic Analysis of the Queue ADTs

As an example of comparison of ADT performance we consider different
representations of queues using a crude time estimate

Simplifying assumptions:

• each high-level operation (arithmetic operation, Boolean operation,
subscripting, assignment) takes 1 time unit

• conditional statement takes 1 time unit + time to evaluate Boolean
expression + time taken by most time consuming alternative (worst-
case assumption)

• field lookup (“dot” operation) takes 1 time unit

• method takes 1 (for the call) plus 1 for each argument (since each is an
assignment)

• creating a new object (from a different class) takes Tc time units

5



Block Representation Queues (Without Wraparound)

public QueueBlock (int size) { //2

items = new Object[size]; //1+Tc

first = 0; //1

last = -1; //1

}

5 + Tc time units

public boolean isEmpty () {return first == last + 1;}

4 time units

public boolean isFull () {return last == items.length - 1;}

5 time units

6



public void enqueue (Object a) throws Overflow { //2

if (!isFull()) { //7

last++; //1

items[last] = a; //2

}

else throw new Overflow("enqueuing to full queue");

}

12 time units

7



How many time units for each of the following. . .

public Object examine () throws Underflow {

if (!isEmpty()) return items[first];

else throw new Underflow("examining empty queue");

}

9

public Object dequeue() throws Underflow {

if (!isEmpty()) {

Object a = items[first];

first++;

return a;

}

else throw new Underflow("dequeuing from empty queue");

}

11

8



Summary for Block Implementation

isEmpty, enqueue, examine and dequeue are constant time operations
Queue is constant time if Tc is constant time In our case — creating

an array of Objects — it will be, but with creation of ADTs containing eg
recursive structures, it may not be

Recursive (Linked) Representation Queues

public QueueLinked () {

first = null;

last = null;

}

3 time units

public boolean isEmpty () {return first == null;}

3 time units

9



public void enqueue (Object a) { //2

if (isEmpty()) { //4

first = new Link(a,null); //1+Tc

last = first; //1

}

else {

last.successor = new Link(a,null); //2+Tc

last = last.successor; //2

}

}

10 + Tc time units

public Object examine () throws Underflow {

if (!isEmpty()) return first.item;

else throw new Underflow("examining empty queue");

}

8 time units

10



public Object dequeue () throws Underflow { //1

if (!isEmpty()) { //5

Object c = first.item; //2

first = first.successor; //2

if (isEmpty()) last = null; //5

return c; //1

}

else throw new Underflow("dequeuing from empty queue");

}

16 time units

Summary for Linked Implementation
Again all are constant time, assuming Tc is.

11



Comparison. . .

block recursive
Queue 5 + Tc 3
isEmpty 4 3
enqueue 12 10 + Tc

examine 8
dequeue 16

. . . shows no clear winner, especially given

• estimates are very rough — many assumptions

• dependent on relative usage of operations in the programs calling the
ADT — eg. is isEmpty used more or less than dequeue

We will generally not be interested in these “small” differences (eg 5 time
units vs 3 time units) — given the assumptions made these are not very
informative.

Rather we will be interested in classifying operations according to rates
of growth. . .

12



Growth Rates

For comparative purposes, exact numbers are pretty irrelevant! It is the
rate of growth that is important.

We will abstract away from inessential detail. . .

• ignore specific values of input and just consider the number of items,
or “size” of input

• ignore precise duration of operations and consider the number of (spe-
cific) operations as an abstract measure of time

• ignore actual storage space occupied by data elements and consider the
number of items stored as an abstract measure of space

13



Summary

Two main types of performance measurement — empirical and analytical.
We will concentrate on analytical:

• fundamental view of behaviour

• abstracts away from machine, data sets, etc

• helps in understanding data structures and their implementations

Rather than attempting ‘fine grained’ analysis that compares small dif-
ferences, we will concentrate on a coarser (but more robust) analysis in terms
of rates of growth.

14


