
Amortized Analysis

• Amortized Case Analysis for Data Structures

• An example of amortized analysis using Multipop stack

• The Simplist ADT

• An amortized analysis of beforeFirst.

• Complexity Examples

Reading: CLRS Chapter 17, Weiss Section 22.1

1



Amortized Case Analysis

Amortized analysis is a variety of worst case analysis, but rather than looking
at the cost of doing the operation once, it examines the cost of repeating the
operation in a sequence.

That is, we determine the worst case complexity T (n) of performing a se-
quence of n operations, and report the amortized complexity as T (n)/n.

An alternative view is the accounting method: determine the individual cost
of each operation, including both its execution time and its influence on the
running time of future operations.

The analogy: imagine that when you perform fast operations you deposit
some “time” into a savings account that you can use when you run a slower
operation.

Reading: Cormen, Leiserson, Rivest, and Stein, Introduction to Algo-
rithms, Chapter 17.

2



Amortized Analysis for a Multi-delete Stack

A multi-delete stack is the stack ADT with an additional operation:

1. mPop(i): delete the top i elements from the stack

Assuming a linked representation, the obvious way to execute mPop(i) is to
perform pop i times.

If each pop takes b time units, mPop(i) will take approximately ib time
units — linear in i!

Worst case is nb time units for stack of size n.
But. . .

3



Before you can delete i elements, need to (somewhere along the way. . . )
individually insert i elements, which takes i operations and hence ic time for
some constant c.

Total for those i + 1 operations is i(c + b). The time for i operations is
approximately linear in i. The average time for each operation

i

i + 1
(c + b)

is approximately constant — independent of i.

More accurate for larger i, which is also where its more important!(
lim
i→∞

i

i + 1
(c + b) = c + b

)
This is called an amortized analysis. The cost of an expensive operation is
amortized over the cheaper ones which must accompany it.

4



The Accounting Method for the Multi-delete Stack

Every time push is called we take a constant time (say a) to perform the
operation, but we also put a constant amount of time (say b) in our “time-
bank”. When it comes time to perform multi-pop mPop(i), if there are i
items to delete, we must have at least ib time units in the bank.

Stack
of

Height

Number of operations

5



Where Amortized Analysis Makes a Difference

In the block implementations of the data structures we have seen so far, we
simply throw an exception when we try to add to a full structure.

Several implementations (e.g. Java.util.ArrayList) do not throw an ex-
ception in this case, but rather create an array twice the size, copy all the
elements in the old array across to the new array, and then add the new
element to the new array.

This is an expensive operation, but it can be shown that the amortized cost
of the add operation is constant.

6



The Simplist ADT

The List ADT provides multiple explicit windows — we need to identify and
manipulate windows in any program which uses the code.

If we only need a single window (eg a simple “cursor” editor), we can write
a simpler ADT Simplist.

• single, implicit window (like Queue or Stack) — no need for arguments
in the procedures to refer to the window position

We’ll also provide only one window initialisation operation, beforeFirst

We’ll show that, because of the single window, all operations except before-
First can be implemented in constant time using a singly linked list! Uses a
technique called pointer reversal (or reference reversal).

We also give a useful amortized result for beforeFirst which shows it will not
be too expensive over a collection of operations.

7



Simplist Specification

constructor Constructor

1. Simplist(): Creates an empty list with two window positions, before
first and after last, and the window over before first.

checkers Checkers

2. isEmpty(): Returns true if the simplist is empty.

3. isBeforeFirst(): True if the window is over the before first position.

4. isAfterLast(): True if the window is over the after last position.

manipulators Manipulators

5. beforeFirst(): Initialises the window to be the before first position.

6. next(): Throws an exception if the window is over the after last posi-
tion, otherwise the window is moved to the next position. May be after
last.

7. previous(): Throws an exception if the window is over the before first
position, otherwise the window is moved to the previous position.

8. insertAfter(e): Throws an exception if the window is over the after last
position, otherwise an extra element e is added to the simplist after the
window position.

9. insertBefore(e): Throws an exception if the window is over the before
first position, otherwise an extra element e is added to the simplist
before the window position.

10. examine(): Throws an exception if the window is over the before first
or after last positions, otherwise returns the value of the element under
the window.

11. replace(e): Throws an exception if the window is over the before first or
after last positions, otherwise replaces the element under the window
with e and returns the replaced element.

8



12. delete(): Throws an exception if the window is over the before first or
after last positions, otherwise the element under the window is removed
and returned, and the window is moved to the following position.

9



Singly Linked Representation

Again block and doubly linked versions are possible — same advantages/disadvantages
as the List ADT. Our aim is to show an improvement in the singly linked
representation.

Since the window position is not passed as an argument, we need to store it
in the data structure. . .

public class SimplistLinked {

private Link before;

private Link after;

private Link window;

10



Reference (or “Pointer”) Reversal

The window starts at before first and can move up and down the list using
next and previous.

Problem

As for the singly linked representation, previous can be found by link cou-
pling, but this takes linear time.

Solution

Q: What do you always do when you walk into a labyrinth?

Leave breadcrumbs, ball of string, or wool from your woolly vest. Draw
arrows on the ground with chalk.

11



Solution...

• point successor fields behind you backwards

• point successor fields in front of you forwards

Problem: window cell can only point one way.

Solution: the before first successor no longer needs to reference the first
element of the list (we can always follow the references back). Instead, use it
to reference the cell after the window, and point the window cell backwards.

reference (pointer) reversal

12



public void previous() {

if (!isBeforeFirst) {

}

else throw

new OutOfBounds("calling previous before start of list");

}

What is the performance of previous?

13



Other operations also require reference reversal.
delete. . .

insertBefore. . .

Disadvantage(?): A little more complex to code.

Advantage: Doesn’t require the extra space overheads of a doubly linked
list.

Advantage outweighs disadvantage — you only code once; might use many
times!

14



Problem: These operations only reverse one or two references, but what
about beforeFirst? Must reverse references back to the beginning. (Note
that previous and next now modify the list structure.)

linear in worst case

What about amortized case?. . .

15



Amortized Analysis

Consider the operation of the window prior to any call to beforeFirst (other
than the first one). Which is constant time anyway.

Must have started at the before first position after last call to beforeFirst.

Can only have moved forward by calls to next and insertBefore.

If window is over the ith cell (numbering from 0 at before first), there must
have been i calls to next and insertBefore. Each is constant time, say 1
“unit”.

16



beforeFirst requires i constant time “operations” (reversal of i pointers)
— takes i time “units”.

Total time: 2i. Total number of operations: i + 1.

Average time per operation: ≈ 2

Average time over a sequence of operations is (roughly) constant!

Formally: Each sequence of n operations takes O(n) time; ie each operation
takes constant time in the amortized case.

17



Performance Comparisons — Simplist

Operation Block Singly linked Doubly linked
Simplist 1 1 1
isEmpty 1 1 1
isBeforeFirst 1 1 1
isAfterLast 1 1 1
beforeFirst 1 1a 1
next 1 1 1
previous 1 1 1
insertAfter n 1 1
insertBefore n 1 1
examine 1 1 1
replace 1 1 1
delete n 1 1

a — amortized bound

18



Complexity Examples: Insertion sort

For simple programs, we can directly calculate the number of basic operations
that will be performed:

procedure INSERTION-SORT(A)
1 for j ← 2 to length[A]
2 do key ← A[j]
3 i = j − 1
4 while i > 0 and A[i] > key
5 do A[i + 1]← A[i]
6 i = i− 1
7 A[i + 1]← key

Lines 2-7 will be executed n times, lines 4-5 will be executed up to j times
for j=1 to n.

Insertion Sort can be shown to be O(n2).

19



A better sorting algorithm (in time)

procedure MERGE-SORT(A, p, r)
if p < r then

q ← b(p + r)/2c
MERGE-SORT(A, p, q); MERGE-SORT(A, q + 1, r); MERGE(A, p, q, r)

procedure MERGE(A, p, q, r)
n1 ← q − p + 1; n2 ← r − q
for i← 1 to n1 do L[i]← A[p + i− 1]
for j ← 1 to n2 do R[j]← A[q + j]
i← 1; j ← 1; k ← p
while i ≤ n1 and j ≤ n2 do

if L[i] ≤ R[j] then A[k + +]← L[i + +]
else A[k + +]← R[j + +]

while i ≤ n1 do A[k + +]← L[i + +]
while j ≤ n2 do A[k + +]← R[j + +]

20



Mergesort can be shown to be O(n lg n)

21



A better sorting algorithm in space

Quicksort has worst case complexity worse than Merge-Sort, but it’s average
complexity and space usage is better than Merge-sort! (CLRS Chapter 7)

procedure QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q − 1); QUICKSORT(A, q + 1, r)

procedure PARTITION(A, p, r)
x← A[r]; i← p− 1
for j ← p to r − 1

do if A[j] ≤ x
then i← i + 1

exchange A[i]↔ A[j]
exchange A[i + 1]↔ A[r]
return i + 1

Quicksort can be shown to be O(n2)

22



Summary

Amortized anaylsis allows us the judge the complexity of data structure op-
erations in the context of the entropy they cause.

• A linked multi-pop stack requires takes time O(n) to do a multi-pop,
but this operation must be accompanied by n individual push opera-
tions.

• The beforeFirst method in Simplist requires time O(n) but this must
be accompanied by n individual next operations.

23



24



? m i s s ?

windowbefore

0 1 2 3 4 5

null

after

25


