
Introduction to Algorithms

• Algorithms

1. What are Algorithms? Design of Algorithms. Types of Algo-
rithms.

• Sorting

1. Insertion Sort. Merge Sort. QuickSort.

Reading: Weiss, Chapter 5.

1



What are algorithms?

• An algorithm is a well-defined finite set of rules that specifies a sequen-
tial series of elementary operations to be applied to some data called
the input, producing after a finite amount of time some data called the
output.

• An algorithm solves some computational problem.

• Algorithms (along with data structures) are the fundamental “building
blocks” from which programs are constructed. Only by fully under-
standing them is it possible to write very effective programs.

2



Design and Analysis

• An algorithmic solution to a computational problem will usually involve
designing an algorithm, and then analysing its performance.

• Design A good algorithm designer must have a thorough background
knowledge of algorithmic techniques, but especially substantial creativ-
ity and imagination. Often the most obvious way of doing something is
inefficient, and a better solution will require thinking “out of the box”.
In this respect, algorithm design is as much an art as a science.

• Analysis A good algorithm analyst must be able to carefully estimate
or calculate the resources (time, space or other) that the algorithm will
use when running. This requires logic, care and often some mathemat-
ical ability.

• The aim of this unit is to give you sufficient background to under-
stand and appreciate the issues involved in the design and analysis of
algorithms.

3



Design and Analysis

In designing and analysing an algorithm we should consider the following
questions:

1. What is the problem we have to solve?

2. Does a solution exist?

3. Can we find a solution (algorithm), and is there more than one solution?

4. Is the algorithm correct?

5. How efficient is the algorithm?

4



The importance of design

By far the most important thing in a program is the design of the algorithm.
It is far more significant than the language the program is written in, or the
clock speed of the computer.

To demonstrate this, we consider the problem of computing the Fibonacci
numbers.

The Fibonacci sequence is the sequence of integers starting

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

which is formally defined by

F1 = F2 = 1 and Fn = Fn−1 + Fn−2.

Let us devise an algorithm to compute Fn.

5



The naive solution

The naive solution is to simply write a recursive method that directly models
the problem.

static int fib(int n) {

return (n<3 ? 1 : fib(n-1) + fib(n-2));

}

Is this a good algorithm/program in terms of resource usage?

Timing it on a (2005) iMac gives the following results (the time is in seconds
and is for a loop calculating Fn 10000 times).

Value Time
F20 1.65
F21 2.51
F22 3.94
F23 6.29

Value Time
F24 9.946
F25 15.95
F26 25.68
F27 41.40

How long will it take to compute F30, F40 or F50?

6



Experimental results
Make a plot of the times taken.

22 24 26

10.0

20.0

30.0

40.0

7



Theoretical results

Each method call to fib() does roughly the same amount of work (just two
comparisons and one addition), so we will have a very rough estimate of the
time taken if we count how many method calls are made.

Exercise: Show the number of method calls made to fib() is 2Fn − 1.

Re-design the algorithm

We can easily re-design the algorithm as an iterative algorithm.

static int fib(int n) {

int f_2; /* F(i+2) */

int f_1 = 1; /* F(i+1) */

int f_0 = 1; /* F(i) */

for (int i = 1; i < n; i++) {

f_2 = f_1 + f_0; /* F(i+2) = F(i+1) + F(i) */

f_0 = f_1; /* F(i) = F(i+1) */

f_1 = f_2; /* F(i+1) = F(i+2) */

}

return f_0;

}

8



An Iterative Algorithm

An iterative algorithm gives the following times:

Value Time
F20 0.23
F21 0.23
F22 0.23
F23 0.23

Value Time
F103 0.25
F104 0.48
F105 2.20
F106 20.26

9



What is an algorithm?

We need to be more precise now what we mean by a problem, a solution and
how we shall judge whether or not an algorithm is a good solution to the
problem.

A computational problem consists of a general description of a question to be
answered, usually involving some free variables or parameters.

An instance of a computational problem is a specific question obtained by
assigning values to the parameters of the problem.

An algorithm solves a computational problem if when presented with any
instance of the problem as input, it produces the answer to the question as
its output.

10



A computational problem: Sorting

Instance: A sequence L of comparable objects.

Question: What is the sequence obtained when the elements of L are placed
in ascending order?

An instance of Sorting is simply a specific list of comparable items, such as

L = [25, 15, 11, 30, 101, 16, 21, 2]

or
L = [“dog”, “cat”, “aardvark”, “possum”].

11



A computational problem: Travelling Salesman

Instance: A set of “cities” X together with a “distance” d(x, y) between
any pair x, y ∈ X.

Question: What is the shortest circular route that starts and ends at a
given city and visits all the cities?

An instance of Travelling Salesman is a list of cities, together with the dis-
tances between the cities, such as

X = {A,B,C,D,E, F}

d =

A B C D E F
A 0 2 4 ∞ 1 3
B 2 0 6 2 1 4
C 4 6 0 1 2 1
D ∞ 2 1 0 6 1
E 1 1 2 6 0 3
F 3 4 1 1 3 0

12



An algorithm for Sorting

One simple algorithm for Sorting is called Insertion Sort. The basic principle
is that it takes a series of steps such that after the i-th step, the first i objects
in the array are sorted. Then the (i+1)-th step inserts the (i+1)-th element
into the correct position, so that now the first i + 1 elements are sorted.

procedure INSERTION-SORT(A)
for j ← 2 to length[A]

do key ← A[j]
. Insert A[j] into the sorted sequence A[1 . . . j − 1]
i = j − 1
while i > 0 and A[i] > key

do A[i + 1]← A[i]
i = i− 1

A[i + 1]← key

13



Pseudo-code

Pseudo-code provides a way of expressing algorithms in a way that is in-
dependent of any programming language. It abstracts away other program
details such as the type system and declaring variables and arrays. Some
points to note are:

• The statement blocks are determined by indentation, rather than { and
} delimiters as in Java.

• Control statements, such as if... then...else and while have similar
interpretations to Java.

• The character . is used to indicate a comment line.

• A statement v ← e implies that expression e should be evaluated and
the resulting value assigned to variable v. Or, in the case of v1 ← v2 ←
e, to variables v1 and v2.

• All variables should be treated as local to their procedures.

• Arrays indexation is denoted by A[i] and arrays are assumed to be
indexed from 1 to N (rather than 0 to N − 1, the approach followed by
Java).

But to return to the insertion sort: What do we actually mean by a good
algorithm?

14



Evaluating Algorithms

There are many considerations involved in this question.

• Correctness

1. Theoretical correctness

2. Numerical stability

• Efficiency

1. Complexity

2. Speed

15



Correctness of insertion sort

Insertion sort can be shown to be correct by a proof by induction.

procedure INSERTION-SORT(A)
for j ← 2 to length[A]

do key ← A[j]
. Insert A[j] into the sorted sequence A[1 . . . j − 1]
i = j − 1
while i > 0 and A[i] > key

do A[i + 1]← A[i]
i = i− 1

A[i + 1]← key

We do the induction over the loop variable j. The base case of the

induction is: “the first element is sorted”,

and the inductive step is: “given the first j elements are sorted after the jth

iteration, the first j + 1 elements will be sorted after the j + 1th iteration.”

16



Proof by Induction

To show insertion sort is correct, let p(n) be the statement “after the nth

iteration, the first n + 1 elements of the array are sorted”

To show p(0) we simply note that a single element is always sorted.

Given p(i) is true for all i < n, we must show that p(n) is true:
After the (n− 1)th iteration the first n elements of the array are sorted.
The nth iteration takes the (n + 1)th element and inserts it after the last
element that a) comes before it, and b) is less than it.
Therefore after the nth iteration, the first n + 1 elements of the array are
sorted.

17



Aside: Proof by Contradiction

Another proof technique you may need is proof by contradiction.
Here, if you want to show some property p is true, you assume p is not

true, and show this assumption leads to a contradiction (something we know
is not true, like i < i).

For example, two sorted arrays of integers, L, containing exactly the same
elements, must be identical.
Proof by contradiction: Suppose M 6= N are two distinct, sorted arrays
containing the same elements. Let i be the least number such that M [i] 6=
N [i]. Suppose a = M [i] < N [i]. Since M and N contain the same elements,
and M [j] = N [j] for all j < i, we must have a = N [k] for some k > i. But
then N [k] < N [i] so N is not sorted: contradiction.

18



Complexity of insertion sort

For simple programs, we can directly calculate the number of basic oper-
ations that will be performed:

procedure INSERTION-SORT(A)
1 for j ← 2 to length[A]
2 do key ← A[j]
3 i = j − 1
4 while i > 0 and A[i] > key
5 do A[i + 1]← A[i]
6 i = i− 1
7 A[i + 1]← key

Lines 2-7 will be executed n times, lines 4-5 will be executed up to j times
for j=1 to n.

19



Efficiency

An algorithm is efficient if it uses as few resources as possible. Typically the
resources which we are interested in are

• Time, and
• Space (memory)

Other resources are important in practical terms, but are outside the
scope of the design and analysis of algorithms.

In many situations there is a trade-off between time and space, in that
an algorithm can be made faster if it uses more space or smaller if it takes
longer.

Although a thorough analysis of an algorithm should consider both time
and space, time is considered more important, and this course will focus on
time complexity.

20



Measuring time

How should we measure the time taken by an algorithm?
We can do it experimentally by measuring the number of seconds it takes

for a program to run — this is often called benchmarking and is often seen
in popular magazines. This can be useful, but depends on many factors:

• The machine on which it is running.
• The language in which it is written.
• The skill of the programmer.
• The instance on which the program is being run, both in terms
of size and which particular instance it is.

So it is not an independent measure of the algorithm, but rather a measure
of the implementation, the machine and the instance.

21



Complexity

The complexity of an algorithm is a “device-independent” measure of how
much time it consumes. Rather than expressing the time consumed in sec-
onds, we attempt to count how many “elementary operations” the algorithm
performs when presented with instances of different sizes.

The result is expressed as a function, giving the number of operations
in terms of the size of the instance. This measure is not as precise as a
benchmark, but much more useful for answering the kind of questions that
commonly arise:

• I want to solve a problem twice as big. How long will that take
me?
• We can afford to buy a machine twice as fast? What size of
problem can we solve in the same time?

The answers to questions like this depend on the complexity of the algo-
rithm.

22



Asymptotic Complexity

In computer science it is most common to compare the complexity of two
algorithms by comparing how the time taken grows with the size of the input.

This is know as asymptotic complexity, or less formally as Big O notation.
If an algorithm runs in O(n2) (big O n squared), then if we double the

size of the input, we quadruple the time taken. (Because (2n)2 = 4n2).
If an algorithm runs in time O(2n) then if we increase the size of the input

by 1, we double the amount of time taken. (Because 2n+1 = 2.2n).
We will look at this more formally later in the unit.

23



A better sorting algorithm (in time)

procedure MERGE-SORT(A, p, r)
if p < r then

q ← b(p + r)/2c
MERGE-SORT(A, p, q); MERGE-SORT(A, q + 1, r); MERGE(A, p, q, r)

procedure MERGE(A, p, q, r)
n1 ← q − p + 1; n2 ← r − q
for i← 1 to n1 do L[i]← A[p + i− 1]
for j ← 1 to n2 do R[j]← A[q + j]
i← 1; j ← 1; k ← p
while i ≤ n1 and j ≤ n2 do

if L[i] ≤ R[j] then A[k + +]← L[i + +]
else A[k + +]← R[j + +]

while i ≤ n1 do A[k + +]← L[i + +]
while j ≤ n2 do A[k + +]← R[j + +]

24



A better sorting algorithm in space

Quicksort has worst case complexity worse than Merge-Sort, but it’s av-
erage complexity and space usage is better than Merge-sort! (CLRS Chapter
7)

procedure QUICKSORT(A, p, r)
if p < r

then q ← PARTITION(A, p, r)
QUICKSORT(A, p, q − 1); QUICKSORT(A, q + 1, r)

procedure PARTITION(A, p, r)
x← A[r]; i← p− 1
for j ← p to r − 1

do if A[j] ≤ x
then i← i + 1

exchange A[i]↔ A[j]
exchange A[i + 1]↔ A[r]
return i + 1

25



Summary

1. An algorithm is a well defined set of rules for solving a computational
problem.

2. A well designed algorithm should be efficient for problems of all sizes.

3. Algorithms are generally evaluated with respect to correctness, stabil-
ity, and efficiency (for space and speed).

4. Theoretical correctness can be established using mathematical proof.

5. Insertion sort is a sorting algorithm that runs in time O(n2).

6. Merge sort is a sorting algorithm that runs in time O(nlgn).

7. Quicksort is a sorting algorithm that runs in time O(n2) but is faster
than Merge sort in the average case.

8. Polynomial algorithms (e.g. O(n), O(nlgn), O(nk)) are regarded as
feasible.

9. Exponential algorithms (e.g. O(2n), O(n)) are regarded as infeasible.

26


