
CITS2200 Data Structures and Algorithms

Topic 19

Hash Tables

• Introduction to hashing — basic ideas

• Hash functions

– properties, 2-universal functions, hashing non-integers

• Collision resolution

– bucketing and separate chaining
– open addressing
– dynamic tables — linear hashing

Reading: Lambert and Osbourne, Section 13.2
c© Tim French CITS2200 Hash Tables Slide 1

1. Introduction

The Table is one of the most commonly used data structures — central to databases
and related information systems.

In the previous section, we briefly examined a List representation for tables, but this
had linear time access.

Can we do better?

We have seen a number of situations where constant time access to data can be
achieved by indexing directly into a block. . .

c© Tim French CITS2200 Hash Tables Slide 2

eg. Array uses an addressing function

α(i, j) = (i− 1)× n + j 1 ≤ i ≤ m, 1 ≤ j ≤ n

a b c d e
a 1 2 3 4 5
b 6 7 8 9 10
c 11 12 13 14 15
d 16 17 18 19 20

eg. Set uses a characteristic function. . .

f(e) =















true (or 1) e ∈ A
false (or 0) otherwise

0 0 11011 0
1 2 3 i-1 i i+1 m-1 m

e e e e e e ee1 2 3 i mi-1 i+1 m-1

c© Tim French CITS2200 Hash Tables Slide 3

These approaches:

• often sacrifice space for time — space wasted by all the “holes”

• rely on the ordering of elements, which translates to an ordering of the memory
block.

Can we improve on these?

• more compact use of space

• applicable to unordered information (eg Table)

⇒ hashing. . .

c© Tim French CITS2200 Hash Tables Slide 4



2. Basic Hashing

The direct indexing approaches above work by:

• setting aside a big enough block for all possible data items

• spacing these so that the address of any item can be found by a simple calculation
from its ordinality

What if we use a block which is not big enough for all possible items?

• Addressing function must map all items into this space.

• Some items may get mapped to the same position ⇒ called a collision.

c© Tim French CITS2200 Hash Tables Slide 5

Example

Suppose we fill out our Lotto coupons as follows. Each time we notice a positive
integer in our travels, we calculate its remainder modulo 45 and add that to our
coupon. . .

The first thing we see is a pizza brochure containing the numbers 165, 93898500,
2, 13, 1690. These map to positions 30, 15, 2, 13, 25.

This fills 5 positions in our data store. . .

0 1 2X 3 4 5 6 7 8
9 10 11 12 13X 14 15X 16 17
18 19 20 21 22 23 24 25X 26
27 28 29 30X 31 32 33 34 35
36 37 38 39 40 41 42 43 44

Next we ring up to order our Greek Vegetarian, and we’re told it’ll be ready in 15!
⇒ collision

c© Tim French CITS2200 Hash Tables Slide 6

Collisions

When two entries “hash” to the same key, we have a collision.

We need a method for dealing with this. However. . .

Advantages:

• Once we allow collisions we have much more freedom in choosing an addressing
function.

• It no longer matters whether we know an ordering over the items.

c© Tim French CITS2200 Hash Tables Slide 7

Exercise

Obtain an address from your name into the block 1. . . 10 as follows:

• Count up the number of letters in your name.

• Add 1.

• Double it.

• Add 1.

• Double it.

• Subtract the number of letters in your name.

• Add the digits in your current number together.

• Square it.

• Add the digits in your number together.

What address did you get?

c© Tim French CITS2200 Hash Tables Slide 8



Such a function is called a hash function. It takes the item to be looked up or
stored and “hashes it” into an address in the block, or hash table.

Hashing is used in both data management (via hash tables) and security and cryp-
tography (for example MD5 checksums).

We will consider hash functions in more detail, and then consider methods for
dealing with collisions.

c© Tim French CITS2200 Hash Tables Slide 9

3. Hash Functions

To begin with, we’ll assume that the element (or key) to be hashed is an integer.
We need a function

h : N → 0 . . . m− 1

that maps it into a hash table block of size m.

Thus, to store a table t, we would set

block[h(a)] = a

for all elements a in t, and fill the other elements of block with null references.

We call h(a) the home address of a.

c© Tim French CITS2200 Hash Tables Slide 10

3.1 Properties of Hash Functions

A hash function that maps each item to a unique position is called perfect. Note
that if we had an infinitely large storage block we could always design a perfect
hash function.

Since our hash functions will generally not be perfect, we want a function that
distributes evenly over the hash table — that is, one that is not biased .

Q: What is an example of a “worst case” hash function in terms of bias?

c© Tim French CITS2200 Hash Tables Slide 11

3.2 2-universal Functions

In the Lotto example earlier, we used the hash function

h(i) = i mod 45.

A commonly used class of hash functions, called 2-universal functions, extends this
idea. . .

c© Tim French CITS2200 Hash Tables Slide 12



A 2-universal hash function has the form

h(i) = ((c1i + c2)mod p)mod m

where m is the size of the hash table, p > m is a large prime (p > 220), c1 < p is
a positive integer, and c2 < p is a non-negative integer.

— (c1i + c2) mod p: “scrambles” i

— mod m: maps into the block

Small changes (eg to c1) lead to completely different hash functions.

c© Tim French CITS2200 Hash Tables Slide 13

Another 2-universal hash function that can be used in languages with bit-string
operations. . .

Assume items are b-bit strings for some b > 0, and m = 2l for some l > 0. The
multiplicative hash function has the form:

h(i) = (a i mod 2b) div 2b−1

for odd a such that 0 < a ≤ 2b − 1.

Advantage — mod and div operations can be evaluated by shifting rather than
integer division ⇒ very quick

c© Tim French CITS2200 Hash Tables Slide 14

3.3 Hashing Non-integers

Non-integers are generally mapped (hashed!) to integers before applying the hash
functions mentioned earlier.

Example

Assume we have a program with 3 variables

float abc, abd, bad;

and we wish to hash to a location to store their values. We could obtain an integer
from:

• the length of each word (as in the earlier example) — will lead to a lot of collisions
⇒ in this case all variables will hash to the same location

• the ordinality of the first character of each word — fewer collisions, but still poor
⇒ the first two will hash to the same location

c© Tim French CITS2200 Hash Tables Slide 15

• summing the ordinality of all characters — likely to be even fewer collisions
⇒ but here, the last two will collide

• “weight” the characters differently, eg 3 times the first plus two times the second
plus one times the third — collisions will be much rarer (but may still occur)
⇒ no collisions in this set

Extending the weighting idea, a typical hash function for strings is to treat the
characters as digits of an integer to some base b.

Assume we have a character string s1s2 . . . sk. Then, we calculate

[ord(s1).b
k−1 + ord(s2).b

k−2 + . . . + ord(sk)b
0] mod 2B

Here:

• b is a small odd number, such as 37. . .

• mod 2B gives the least significant B bits of the result — eg 16 or 32.

Q: Why the least significant bits?
c© Tim French CITS2200 Hash Tables Slide 16



4. Collision Resolution Techniques

There are many variations on collision resolution techniques. We consider examples
of three common types.

c© Tim French CITS2200 Hash Tables Slide 17

4.1 Bucketing and Separate Chaining

The simplest solution to the collision problem is to allow more than one item to be
stored at each position in the hash table

⇒ associate a List with each hash table cell. . .

c© Tim French CITS2200 Hash Tables Slide 18

Bucketing

— each list is represented by a (fixed size) block.

1

m-1

o

i

q f

r

t u p w

c© Tim French CITS2200 Hash Tables Slide 19

“Advantage”

• Simple to implement — hash to address then search list.

Disadvantages

• Searching the List slows down Table access.

• Fixed size ⇒ may waste a lot of space (both in hash table and buckets).

• Buckets may overflow! ⇒ back where we started (a collision is just an overflow
with a bucket size of 1).

c© Tim French CITS2200 Hash Tables Slide 20



Separate Chaining (Variable Size Bucketing)

— each List is represented by linked list or chain.

r

q

t

f

u p

1

m-1

o

i w

c© Tim French CITS2200 Hash Tables Slide 21

Advantages

• Simple to implement.

• No overflow.

Disadvantages

• Searching the List slows down Table access.

• Extra space for pointers (if we are storing records of information the space used
by pointers will generally be small compared to the total space used).

• Performance deteriorates as chain lengths increase.

c© Tim French CITS2200 Hash Tables Slide 22

Performance

Worst case for separate chaining ⇒ all items stored in a single chain. Worst case
performance same as List: O(n) — nothing gained!

But expected case performance is much better. . .

The load factor λ of a hash table is the number of items in the table divided by the
size m of the table.

Assume that each entry in a hash table is equally likely to be accessed, and
that each sequence of n insertions is equally likely to occur. Then a hash table
that uses separate chaining and has load factor λ has the following expected
case performance:

• s(λ) = 2 + λ/2 probes (read accesses) for successful search

• u(λ) = 2 + λ probes for unsuccessful search

See Wood, Section 9.2.

c© Tim French CITS2200 Hash Tables Slide 23

4.2 Open Addressing

Separate chaining (and bucketing) require additional space. Yet there will normally
be space in the table that is wasted.

Alternative ⇒ open addressing methods

• store all items in the hash table

• deal with collisions by incrementing hash table index, with wrap-around

Linear probing — increment hash index by one (with wrap-around) until the item,
or null , is found.

Problem — items tend to “cluster”.

Double hashing — increment hash index using an “increment hash function”! ⇒
may jump to anywhere in table.

c© Tim French CITS2200 Hash Tables Slide 24



Advantages

• All space in the hash table can be used.

Disadvantages

• Insertions limited by size of table.

• Deletions are problematic. . .

Deleting items means others may not be able to be reached — requires reorganizing
table, or marking (flagging) items as deleted.

The latter is most common, but means erosion of space in the hash table.

c© Tim French CITS2200 Hash Tables Slide 25

4.3 Dynamic Tables — Linear Hashing

Finally, there are methods that consider the hash table to be dynamic rather than
static!

Linear hashing is an extension of separate chaining — rather than allowing the
variable-length buckets (chains) to grow indefinitely, we limit the average size of
the buckets.

• Insertions: if the average chain size exceeds a predefined upper bound, split the
“next” unsplit bucket, and hash the items in the bucket by a function with double
the previous base (ie m, 2m, 4m,. . . ).

• Deletions: if the average bucket size drops below a predefined minimum and the
table is no smaller than the original table, shrink the table.

c© Tim French CITS2200 Hash Tables Slide 26

Effectively, we use two hash functions parameterised by split (the split point) and
M (roughly the table size). Assume h is the hash function that maps keys to large
integers.

Then, the hashed address is:

H(k) =















h(k) mod 2M, if h(k) mod M < split
h(k) mod M, otherwise















If the loading factor becomes too high (eg more than 0.8M elements in the table),
then:

1. split = split + 1

2. rehash all items in bucket split− 1

3. if split = M , set split = 0 and M = 2M .

c© Tim French CITS2200 Hash Tables Slide 27

Example

Assume table is initially of size 3, and maximum loading is 2. . .

a
b

c
e

d
f

b
f

c
e

d
g b

f

d
g

aa

h
i

c
e

0 1 2 0 1 2 3 0 1 2 3 4

c© Tim French CITS2200 Hash Tables Slide 28



Disadvantages

• (More complicated to code.)

• Requires movement of items.

Advantages

•Maximum load is maintained — improves expected efficiency.

• Insertions — no overflow, not bounded by size of table.

• Deletions — no erosion.

This approach is used by java.util.Hashtable — have a look at its API docu-
mentation.

c© Tim French CITS2200 Hash Tables Slide 29

5. Summary

Hash tables can be used to:

• improve the space requirements of some ADTs for which bounded representations
are suitable

• improve the time efficiency of some ADTs, such as Table, which require un-
bounded representations

We have seen a number of methods for collision resolution in hash tables:

• bucketing and separate chaining

• open addressing, including linear probing and double hashing

• dynamic methods, such as linear hashing

c© Tim French CITS2200 Hash Tables Slide 30

6. Caution!

Note that while performance can be very good, this is not a panacea! For many
applications, such as those naturally represented by trees, hashing would lose the
structure.

ie. don’t “hash first, ask questions later”

(Hash can be addictive!)

c© Tim French CITS2200 Hash Tables Slide 31


