
CITS2200 Data Structures and Algorithms

Topic 16

Maps

• Definitions — what is a map (or function)?

• Specification

• List-based representation (singly linked)

• Sorted block representation

Reading: Weiss, Section 6.8
c© Tim French CITS2200 Maps Slide 1

1. What is a Map (or Function)?

Some definitions. . .

relation — set of n-tuples

eg. {〈1, i, a〉, 〈2, ii, b〉, 〈3, iii, c〉, 〈4, iv, d〉, . . .}

binary relation — set of pairs (2-tuples)

eg. {〈lassie, dog〉, 〈babushka, cat〉, 〈benji, dog〉, 〈babushka, human〉, . . .}

domain — set of values which can be taken on by the first item of a binary relation

eg. {lassie, babushka, benji, felix, tweety}

codomain — set of values which can be taken on by the second item of a binary
relation

eg. {dog, cat, human, bird}

c© Tim French CITS2200 Maps Slide 2

Example

babushka

human

cat

dog

domain codomain

benji
felix

lassie
tweety

bird

dog is called the image of lassie under the relation

c© Tim French CITS2200 Maps Slide 3

map (or function) — binary relation in which each element in the domain is mapped
to at most one element in the codomain (many-to-one)

eg.

Affiliation = { 〈 Turing , Manchester 〉
〈 Von Neumann , Princeton 〉
〈 Knuth , Stanford 〉
〈 Minsky , MIT 〉
〈 Dijkstra , Texas 〉
〈 McCarthy , Stanford 〉}

Shorthand notation: eg. affiliation(Knuth) = Stanford

partial map — not every element of the domain has an image under the map (ie,
the image is undefined for some elements)

c© Tim French CITS2200 Maps Slide 4

2. Aside: Why Study Maps?

A Java method is a function or map — why implement our own map as an ADT?

• Create, modify, and delete maps during use.

eg. a map of affiliations may change over time — Turing started in Cambridge,
but moved to Manchester after the war.

A Java program cannot modify itself (and therefore its methods) during execution
(some languages, eg Prolog, can!)

• Java methods just return a result — we want more functionality (eg. ask “is the
map defined for a particular domain element?”)

c© Tim French CITS2200 Maps Slide 5

3. Map Specification

! Constructor

1.Map(): create a new map that is undefined for all domain elements.

! Checkers

2. isEmpty(): return true if the map is empty (undefined for all domain elements),
false otherwise.

3. isDefined(d): return true if the image of d is defined, false otherwise.

!Manipulators

4. assign(d,c): assign c as the image of d.

5. image(d): return the image of d if it is defined, otherwise throw an exception.

6. deassign(d): if the image of d is defined return the image and make it undefined,
otherwise throw an exception.

c© Tim French CITS2200 Maps Slide 6

4. List-based Representation

A map can be considered to be a list of pairs. Providing this list is finite, it can be
implemented using one of the techniques used to implement the list ADT.

Better still, it can be built using the list ADT!

(Providing it can be done efficiently — recall the example of overwrite, using insert
and delete, in a text editor based on the list ADT.)

Question: Which List ADT should we use?

• Require arbitrarily many assignments.

• Do we need previous?

c© Tim French CITS2200 Maps Slide 7

Implementation. . .

public class MapLinked {

private ListLinked list;

public MapLinked () {

list = new ListLinked();

}

}

c© Tim French CITS2200 Maps Slide 8

4.1 Pairs

We said a (finite) map could be considered a list of pairs — need to define a Pair
object. . .

public class Pair {

public Object item1; // the first item (or domain item)

public Object item2; // the second item (or codomain item)

public Pair (Object i1, Object i2) {

item1 = i1;

item2 = i2;

}

c© Tim French CITS2200 Maps Slide 9

// determine whether this pair is the same as the object passed

// assumes appropriate ‘‘equals’’ methods for the components

public boolean equals(Object o) {

if (o == null) return false;

else if (!(o instanceof Pair)) return false;

else return item1.equals(((Pair)o).item1) &&

item2.equals(((Pair)o).item2);

}

// generate a string representation of the pair

public String toString() {

return "< "+item1.toString()+" , "+item2.toString()+" >";

}

}

c© Tim French CITS2200 Maps Slide 10

4.2 Example — Implementation of image

public Object image (Object d) throws ItemNotFound {

WindowLinked w = new WindowLinked();

list.beforeFirst(w);

list.next(w);

while (!list.isAfterLast(w) &&

!((Pair)list.examine(w)).item1.equals(d)) list.next(w);

if (!list.isAfterLast(w)) return ((Pair)list.examine(w)).item2;

else throw new ItemNotFound("no image for object passed");

}

Notes:

1. !list.isAfterLast(w)must precede list.examine(w) in the condition for
the loop — why??

2. Note use of parentheses around casting so that the field reference (eg .item1)
applies to the cast object (Pair rather than Object).

3. Assumes appropriate equals methods for each of the items in a pair.

c© Tim French CITS2200 Maps Slide 11

4.3 Performance

Map and isEmpty make trivial calls to constant-time list ADT commands.

The other four operations all require a sequential search within the list ⇒ linear
in the size of the defined domain (O(n))

Performance using (singly linked) List ADT

Operation
Map 1
isEmpty 1
isDefined n
assign n
image n
deassign n

If the maximum number of pairs is predefined, and we can specify a total ordering
on the domain, better efficiency is possible. . .

c© Tim French CITS2200 Maps Slide 12

5. Sorted-block Representation

Some of the above operations take linear time because they need to search for a
domain element. The above program does a linear search.

Q: Are any more efficient searches available for arbitrary linked list?

c© Tim French CITS2200 Maps Slide 13

5.1 Binary Search

An algorithm for binary search. . .

u

l

m
u’

m’

u’’

l’’
m’’

l’’’=u’’’

l’

d
d

d
d

c© Tim French CITS2200 Maps Slide 14

Assume block is defined as:

private Pair[] block;

Then binary search can be implemented as follows. . .

protected int bSearch (Object d, int l, int u) {

if (l == u) {

if (d.toString().compareTo(block[l].item1.toString()) == 0)

return l;

else return -1;

}

else {

int m = (l + u) / 2;

if (d.toString().compareTo(block[m].item1.toString()) <= 0)

return bSearch(d,l,m);

else return bSearch(d,m+1,u);

}

}

c© Tim French CITS2200 Maps Slide 15

Note: compareTo is an instance method of String — returns 0 if its argument
matches the String, a value < 0 if the String is lexicographically less than the
argument, and a value > 0 otherwise.

Exercise: Can bSearch be implemented using only the abstract operations of the
list ADT?

c© Tim French CITS2200 Maps Slide 16

5.2 Performance of Binary Search

One way of looking at the problem, to get a feel for it, is to consider the biggest
list of pairs we can find a solution for with m calls to bSearch.

Calls to bSearch Size of list
1 1
2 1 + 1
3 2 + 1 + 1
4 4 + 2 + 1 + 1
...
m (2m−2 + 2m−3 + · · · + 21 + 20) + 1

= (2m−1 − 1) + 1
= 2m−1

It can be shown (see Exercises) that Tn is O(log n).

c© Tim French CITS2200 Maps Slide 17

6. Comparative Performance of Operations

isDefined and image simply require binary search, therefore they are O(logn) —
much better than singly linked list representation.

However, since the block is sorted, both assign and deassign may need to move
blocks of items to maintain the order. Thus they are

max(O(logn), O(n)) = O(n).

In summary. . .

Operation Linked List Sorted Block
Map 1 1
isEmpty 1 1
isDefined n log n
assign n n
image n log n
deassign n n

c© Tim French CITS2200 Maps Slide 18

Sorted block may be best choice if:

1. map has fixed maximum size

2. domain is totally ordered

3. map is fairly static — mostly reading (isDefined, image) rather than writing
(assign, deassign)

Otherwise linked list representation is probably better.

c© Tim French CITS2200 Maps Slide 19

7. Summary

• A map (or function) is a many-to-one binary relation.

• Implementation using linked list

– can be arbitrarily large

– reading from and writing to the map takes linear time

• Sorted block implementation

– fixed maximum size

– requires ordered domain

– reading is logarithmic, writing is linear

c© Tim French CITS2200 Maps Slide 20

