
CITS2200 Data Structures and Algorithms

Topic 11

Tree Implementations

• Tree Specifications

• Block representation of Bintree

• Recursive representations of Bintree

• Representation of multiway Trees

Reading: Weiss, Chapter 18
c© Tim French CITS2200 Tree Implementations Slide 1

1. Specifications

Binary Tree (Bintree)

Just like the list ADT, we will have windows over nodes. The operations are similar,
with previous and next replaced by parent and child and so on. Some are a little
more complex because of the more complex structure. . .

! Constructor

1. Bintree(): creates an empty binary tree.

! Checkers

2. isEmpty(): returns true if the tree is empty, false otherwise.

3. isRoot(w): returns true if w is over the root node (if there is one), false other-
wise.

4. isExternal(w): returns true if w is over an external node, false otherwise.

5. isLeaf(w): returns true if w is over a leaf node, false otherwise.

c© Tim French CITS2200 Tree Implementations Slide 2

!Manipulators

6. initialise(w): set w to the window position of the single external node if the tree
is empty, or the window position of the root otherwise.

7. insert(e,w): if w is over an external node replace it with an internal node with
value e (and two external children) and leave w over the internal node, otherwise
throw an exception.

8. child(i,w): throw an exception if w is over an external node or i is not 1 or 2,
otherwise move the window to the i-th child.

9. parent(w): throw an exception if the tree is empty or w is over the root node,
otherwise move the window to the parent node.

10. examine(w): if w is over an internal node return the value at that node, otherwise
throw an exception.

11. replace(e,w): if w is over an internal node replace the value with e and return
the old value, otherwise throw an exception.

12. delete(w): throw an exception if w is over an external node or an internal node
with no external children, otherwise replace the node under w with its internal
child if it has one, or an external node if it doesn’t.

c© Tim French CITS2200 Tree Implementations Slide 3

Alternatives for child. . .

1. left(w): throw an exception if w is over an external node, otherwise move the
window to the left (first) child.

2. right(w): throw an exception if w is over an external node, otherwise move the
window to the right (second) child.

— can be convenient for binary trees, but does not extend to (multiway) trees.

Note: as with the list ADT, the Window class can be replaced by a treeIterator
to navigate and manipulate the tree.

c© Tim French CITS2200 Tree Implementations Slide 4

Tree

Just modify Bintree to deal with more children (higher branching). . .

1. degree(w): returns the degree of the node under w.

2. child(i,w): throw an exception if w is over an external node or i is not in the
range 1, . . . , d where d is the degree of the node, otherwise move the window
to the i-th child.

Orchard

Since an orchard is a list (or queue) of trees, an orchard can be specified simply
using List (or Queue) and Tree (or Bintree)!

c© Tim French CITS2200 Tree Implementations Slide 5

2. Block Representation of Bintree

Based on an infinite binary tree — every internal node has two internal children. . .

1

3

4 5 6 7

8 9 10 11 12 13 14 15

2

This is called a level order enumeration.

Every binary tree is a prefix of the infinite binary tree — can be obtained by pruning
subtrees.

c© Tim French CITS2200 Tree Implementations Slide 6

Example. . .

1

3

4 5 6 7

8 9 10 11 12 13 14 15

2

a b c d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e f g h

a

b

1

2 3

4 6 e 7

12 13

d

c

f

g h

The size of block needed is determined by the height of tree.

Level-order representation is implicit — branches are not represented explicitly.

c© Tim French CITS2200 Tree Implementations Slide 7

2.1 Time Performance

Level-order representation has the following properties:

1. i(u) = 1 iff u is the root.

2. Left child of u has index 2i(u).

3. Right child of u has index 2i(u) + 1.

4. If u is not the root, then the parent of u has index i(u)/2 (where / is integer
division).

These properties are important — allow constant time movement between nodes

⇒ all Bintree operations are constant time!

c© Tim French CITS2200 Tree Implementations Slide 8

2.2 Space

Level-order representation can waste a great deal of space.

Q: What is the worst case for memory consumption?

Q: What is the best case for memory consumption?

A binary tree of size n may require a block of size 2n − 1

⇒ exponential increase in size!

c© Tim French CITS2200 Tree Implementations Slide 9

3. Recursive Representations of Bintree

Basic Structure

Recall List:

• recursive definition

• recursive singly linked structure — one item, one successor

We can do the same with binary trees — difference is we now need two “successors”.

c© Tim French CITS2200 Tree Implementations Slide 10

Recall the (recursive) definition of a binary tree — can be briefly paraphrased as:

A binary tree either:

• is empty, or

• consists of a root node u and two binary trees u(1) and u(2). The function
u is called the index.

It can be implemented as follows.

First, instead of Link, use a TreeCell. . .

c© Tim French CITS2200 Tree Implementations Slide 11

public class TreeCell {

public Object nodeValue;

public TreeCell[] children;

public TreeCell(Object v, TreeCell tree1, TreeCell tree2) {

nodeValue = v;

children = new TreeCell[2];

children[0] = tree1;

children[1] = tree2;

}

}

null null null

null null

null

c© Tim French CITS2200 Tree Implementations Slide 12

The children array performs the role of the index u — it holds the “successors”.

An alternative for binary trees is. . .

public class TreeCell {

public Object nodeValue;

public TreeCell left;

public TreeCell right;

public TreeCell(Object v, TreeCell tree1, TreeCell tree2) {

nodeValue = v;

left = tree1;

right = tree2;

}

}

but this doesn’t extend well to trees in general. The previous version can easily be
extended to multiway trees by initialising larger arrays of children.

c© Tim French CITS2200 Tree Implementations Slide 13

Windows

Just like lists, we wish to allow multiple windows for manipulating trees. We will
therefore define a “companion” window class.

In the notes and exercises on lists, we considered a representation in which the win-
dow contained a member variable that referenced the cell previous to the (abstract)
window position. This was so that insertBefore and delete could be implemented
in constant time without moving data around.

Similar problems arise in trees with delete, where we want to point the parent node
to a different child.

c© Tim French CITS2200 Tree Implementations Slide 14

We will use the same technique — the window class will store a reference to the
parent of the (abstract) window node

⇒ requires a “before root” cell.

nullbeforeRoot

null null

null

for abstract window over root cell

window class must reference before root cell

c© Tim French CITS2200 Tree Implementations Slide 15

Since the parent has two children, we need to know which the window is over, so
we include a branch number. . .

beforeRoot

1
TreeWindow

c© Tim French CITS2200 Tree Implementations Slide 16

public class TreeWindow {

public TreeCell parentnode;

public int childnum;

public TreeWindow () {}

}

For example. . .

public void initialise(TreeWindow w) {

w.parentnode = beforeRoot;

w.childnum = 0;

}

c© Tim French CITS2200 Tree Implementations Slide 17

External Nodes

Two choices:

1. If values are attached to external nodes, the external nodes must be represented
by cells. They can be distinguished from internal nodes by a null reference as
the left child.

0beforeRoot

null

c© Tim French CITS2200 Tree Implementations Slide 18

2. If external nodes have no values they can be represented simply by null refer-
ences. . .

0beforeRoot

null

We will assume external nodes do not store values, and represent them by null
references.

c© Tim French CITS2200 Tree Implementations Slide 19

3.1 Examples

Constructor

public BintreeLinked () {

beforeRoot = new TreeCell(null, null, null);

}

Checkers

public boolean isEmpty() {return beforeRoot.children[0] == null;}

public boolean isExternal(TreeWindow w) {

return w.parentnode.children[w.childnum] == null;

}

c© Tim French CITS2200 Tree Implementations Slide 20

public boolean isLeaf(TreeWindow w) {

return !isExternal(w)

&& w.parentnode.children[w.childnum].children[0] == null

&& w.parentnode.children[w.childnum].children[1] == null;

}

c© Tim French CITS2200 Tree Implementations Slide 21

Manipulators

Exercises. . .

public Object examine(TreeWindow w) throws OutOfBounds {

if (!isExternal(w))

else throw new OutOfBounds("examining external node");

}

public void insert(Object e, TreeWindow w) throws OutOfBounds {

if (isExternal(w))

else

throw new OutOfBounds("inserting over internal node");

}

c© Tim French CITS2200 Tree Implementations Slide 22

3.2 Performance

Clearly all operations except parent can be implemented to run in constant time.

parent in Bintree is like previous in List.

Can be achieved in a similar manner to link coupling — search the tree from the
before-root node. Recall traversals from Topic 10!

Takes O(n) time in worst case for binary tree of size n.

Q: What representation could we use to obtain a constant time implementation of
parent?

c© Tim French CITS2200 Tree Implementations Slide 23

3.3 Sbintree

Just like the simplist ADT, if a tree only requires one window, we can implement it
using reference reversal!

Analogous to Simplist (although a bit more involved):

• implicit window

• constant time implementation of parent

• initialise is linear time, but constant time in the amortized case

• avoid stack memory for recursion during depth-first traversal

c© Tim French CITS2200 Tree Implementations Slide 24

Representation of graphs

Two ways to represent a graph — adjacency lists or an adjacency matrix.

Adjacency lists The graph G is represented by an array of |V (G)| linked lists,
with each list containing the neighbours of a vertex.

Therefore we would represent G4 as follows:

7 ! 5 ! 6 !

6 ! 3 ! 5 ! 7 !

5 ! 2 ! 3 ! 4 ! 6 ! 7 !

4 ! 5 !

3 ! 2 ! 5 ! 6 !

2 ! 1 ! 3 ! 5 !

1 ! 2 !

This Requires two list elements for each edge and thus the space required is
O(|V (G)| + |E(G)|).

c© Tim French CITS2200 Tree Implementations Slide 25

For comparison...

...the graph G4.

1

2

3

4

5

6 7
"
"
"
"
"
"
"
" #

#
#
#
#
#
#
#

Note: In general to avoid writing |V (G)| and |E(G)| we shall simply put V =
|V (G)| and E = |E(G)|.

c© Tim French CITS2200 Tree Implementations Slide 26

Adjacency matrix

The adjacency matrix of a graph G is a V × V matrix A where the rows and
columns are indexed by the vertices and such that Aij = 1 if and only if vertex i is
adjacent to vertex j.

For graph G4 we have the following

A =

0 1 0 0 0 0 0
1 0 1 0 1 0 0
0 1 0 0 1 1 0
0 0 0 0 1 0 0
0 1 1 1 0 1 1
0 0 1 0 1 0 1
0 0 0 0 1 1 0

The adjacency matrix representation uses O(V 2) space. For a sparse graph E is
much less than V 2, and hence we would normally prefer the adjacency list rep-
resentation while for a dense graph E is close to V 2 and the adjacency matrix
representation is preferred.

c© Tim French CITS2200 Tree Implementations Slide 27

More on the two representations

For small graphs or those without weighted edges it is often better to use the
adjacency matrix representation anyway.

It is also easy and more intuitive to define adjacency matrix representations for
directed and weighted graphs.

However your final choice of representation depends precisely what questions you
will be asking. Consider how you would answer the following questions in both
representations (in particular, how much time it would take).

Is vertex v adjacent to vertex w in an undirected graph?

What is the out-degree of a vertex v in a directed graph?

What is the in-degree of a vertex v in a directed graph?

c© Tim French CITS2200 Tree Implementations Slide 28

4. Summary

• Block representation of Bintree

– time efficient — constant time in all operations

– not space efficient — may waste nearly 2n cells

• Recursive representation of Bintree

– a generalisation of List

– choices for window and external node representations

– parent is linear time (traversal), all other operations are constant time

• Tree

– generalisation of Bintree

• Graph Representations: Adjacency List and Adjacency Matrix.

c© Tim French CITS2200 Tree Implementations Slide 29

