
CITS2200 Data Structures and Algorithms

Topic 9

Objects and Iterators

• Generalising ADTs using objects

— wrappers, casting

• Iterators for Collection Classes

• Inner Classes

Reading: Weiss Chapter 15.
c© Tim French CITS2200 Objects and Iterators Slide 1

0.1 Casting

Recall that in Java we can assign “up” the hierarchy — a variable of some class
(which we call its reference) can be assigned an object whose reference is a subclass.

However the converse is not true — a subclass variable cannot be assigned an object
whose reference is a superclass, even if that object is a subclass object.

In order to assign back down the hierarchy, we must use casting.

This issue occurs more subtly when using ADTs. Recall our implementation of a
queue. . .

c© Tim French CITS2200 Objects and Iterators Slide 2

public class QueueBlock {
private Object[] items; // array of Objects
...
public Object dequeue() throws Underflow { // returns an Object
if (!isEmpty()) {
Object a = items[first];
first++;
return a;

}
else...

Consider the calling program:

QueueBlock q = new QueueBlock();
String s = "OK, I’m going in!";
q.enqueue(s); // put it in the queue
s = q.dequeue(); // get it back off ???

The last statement fails. Why?

c© Tim French CITS2200 Objects and Iterators Slide 3

The queue holds Objects. Since String is a subclass of Object, the queue can
hold a String, but its reference in the queue is Object. (Specifically, it is an
element of an array of Objects.)

dequeue() then returns the “String” with reference Object.

The last statement therefore asks for something with reference Object (the super-
class) to be assigned to a variable with reference String (the subclass), which is
illegal.

We have to cast the Object back “down” the hierarchy:

s = (String) q.dequeue(); // correct way to dequeue

c© Tim French CITS2200 Objects and Iterators Slide 4

0.2 Generics

Java 1.5 provides an alternative approach. Generics allow you to specify the type
of a collection class:

Stack<String> ss = new Stack<String>();
String s = "OK, I’m going in!";
ss.push(s);
s = ss.pop()

Like autoboxing, generics are handled by compiler rewrites — the compiler checks
that the type is correct, and substitutes code to do the cast for you.

c© Tim French CITS2200 Objects and Iterators Slide 5

Writing Generic Classes

/**
* A simple generic block stack for
* holding object of type E
**/
class Stack<E> {

private Object[] block;
private int size;

public Stack(int size) {block = new Object[size];}

public E pop() {return (E) block[--size];}

public void push(E el) {block[size++] = el;}
}

c© Tim French CITS2200 Objects and Iterators Slide 6

Using Generic Classes

public static void main(String[] args){
//create a Stack of Strings
Stack<String> s = new Stack<String>(10);
s.push("abc");
System.out.println(s.pop());

//create a stack of Integers
Stack<Integer> t = new Stack<Integer>(1);
t.push(7);
System.out.println(t.pop());

}

c© Tim French CITS2200 Objects and Iterators Slide 7

How Generics Work

The program:

Stack<String> ss = new Stack<String>(10);
String s = "OK, I’m going in!";
ss.push(s);
s = ss.pop();

is converted to:

Stack<Object> ss = new Stack<Object>(10);
String s = "OK, I’m going in!";
ss.push(s);
s = (String) ss.pop();

at compile time. Generics allow the compiler to ensure that the casting is correct,
rather than the runtime environment.

c© Tim French CITS2200 Objects and Iterators Slide 8

Some Tricks with Generics...

Note that Stack<String> is not a subclass of Stack<Object> (because you can’t
put an Integer on a stack of Strings).

Therefore, polymorphism won’t allow you to define methods for all stacks of sub-
classes of String. e.g.

public int printAll(Stack<Object>);

Java 5 allows wildcards to overcome this problem:

public int printAll(Stack<?>);

or even

public int printAll(Stack<? extends Object>);

c© Tim French CITS2200 Objects and Iterators Slide 9

1. Iterators

It is often necessary to traverse a collection — ie look at each item in turn.

Example:

In the lab exercises, you were asked to get characters out of a basic LinkedListChar
one at a time and print them on separate lines. Doing this using the supplied
methods destroyed the list.

We now know this to be the behaviour of a Stack, which has no public methods for
accessing items other than the top one.

c© Tim French CITS2200 Objects and Iterators Slide 10

Example:

In Topic 3, we developed the simple linked list class. In order to print out the items
in the list (without destroying it), we provided the following toString method:

public String toString () {
LinkChar cursor = first;
String s = "";
while (cursor != null) {
s = s + cursor.item;
cursor = cursor.successor;

}
return s;

}
}

c© Tim French CITS2200 Objects and Iterators Slide 11

This is not a generic approach. If we wanted to look at the items for another
purpose — say to print on separate lines, or search for a particular item — we
would have to write another method using another loop to do that.

A more standard, generic approach is to use an iterator.

An iterator is a companion class to a collection (known as the iterator’s backing
collection), for traversing the collection (ie examining the items one at a time).

An iterator uses standard methods for traversing the items, independently of the
backing collection. In Java, these methods are specified by the Iterator interface in
java.util.

c© Tim French CITS2200 Objects and Iterators Slide 12

Interface Iterator<E>

The interface has the methods:

• boolean hasNext() — return true if the iterator has more items

• E next() — if there is a next item, return that item and advance to the next
position, otherwise throw an exception

• void remove()— remove from the underlying collection the last item returned
by the iterator. Throws an exception if the immediately preceding operation was
not next.

Note: some iterators do not provide this method, and throw an
UnsupportedOperationException (arguably a poor use of interfaces).

c© Tim French CITS2200 Objects and Iterators Slide 13

Interface Collection<E>

The underlying collection must also have a method for “spawning” a new iterator
over that collection. In Java’s Collection interface, this method is called iterator.

Iterator<E> interator()

Have a look at the collection classes:

http://www.csse.uwa.edu.au/programming/java/jdk1.5/api/

Here, you will find specifications for some of the data structures we have already
seen and many we are yet to discuss. You may wonder why we are bothering to
implement these data structures at all!

c© Tim French CITS2200 Objects and Iterators Slide 14

2. Using Java Collections

Built-in (API) classes can be accessed in two ways:

1. by providing their “full name”

java.util.LinkedList<String> b = new java.util.LinkedList();

Here LinkedList is a class in the API package java.util.

2. by importing the class

import java.util.LinkedList;
.
.
.
LinkedList<String> b = new LinkedList();

3. You can also import all classes in a package

import java.util.*;

c© Tim French CITS2200 Objects and Iterators Slide 15

3. java.util

Most general data structures in the Java API are in the util package. There are:

1. Collections:

LinkedList<E>, ArrayList<E>, PriorityQueue<E>,
Set<E>, Stack<E>, TreeSet<E>

2.Maps:

SortedMap<K, V>, TreeMap<K,V>, HashMap<K, V>

3. and others:

Iterator<E>, BitSet

These allow you to create most of the data structures you will ever need. However, it
is important to be able to compare the performance and understand the limitations
of each. We will also examine some data structures that are not in the Java API.

c© Tim French CITS2200 Objects and Iterators Slide 16

3.1 Using Iterators

The following code creates an iterator to access the elements of a queue.

public static void main(String[] args) {
Queue q = new QueueCyclic();
q.enqueue(new Character(’p’));
q.enqueue(new Character(’a’));
q.enqueue(new Character(’v’));
q.enqueue(new Character(’o’));
Iterator it = q.iterator();
while(it.hasNext())
System.out.println(it.next());

}

c© Tim French CITS2200 Objects and Iterators Slide 17

3.2 Implementation — Backing Queue

import java.util.Iterator;
public class QueueCyclic implements Queue {

Object[] items; // package access for
int first, last; // companion class

public QueueCyclic(int size) {
items = new Object[size+1];
first = 0;
last = size;

}

public Iterator iterator() {
return new BasicQueueIterator(this);

}
...

c© Tim French CITS2200 Objects and Iterators Slide 18

3.3 Implementation — Iterator

class BasicQueueIterator implements Iterator {
private QueueCyclic backingQ;
private int current;

BasicQueueIterator(QueueCyclic q) {
backingQ = q;
current = backingQ.first;

}

public boolean hasNext() {
return !backingQ.isEmpty() &&
((backingQ.last >= backingQ.first &&
current <= backingQ.last) ||

(backingQ.last < backingQ.first &&
(current >= backingQ.first || current <= backingQ.last)));

}
c© Tim French CITS2200 Objects and Iterators Slide 19

public Object next() {
if (!hasNext())
throw new NoSuchElementException("No more elements.");

else {
Object temp = backingQ.items[current];
current = (current+1)%backingQ.items.length;
return temp;

}
}

public void remove() {
throw new UnsupportedOperationException
("Cannot remove from within queue.");

}
}

c© Tim French CITS2200 Objects and Iterators Slide 20

3.4 Fail-fast Iterators

Problem: What happens if backing collection changes during use of an iterator?

eg. multiple iterators that implement remove

⇒ can lead to erroneous return data, or exceptions (eg null pointer exception)

One Solution: Disallow further use of iterator (throw exception) when an unex-
pected change to backing collection has occurred — fail-fast method

c© Tim French CITS2200 Objects and Iterators Slide 21

Changes to the backing collection. . .

public class QueueCyclic implements Queue {

Object[] items;
int first, last;
int modCount; // number of times modified

public void enqueue(Object a) {
if (!isFull()) {
last = (last + 1) % items.length;
items[last] = a;
modCount++;

}
else throw new Overflow("enqueuing to full queue");

}
...

c© Tim French CITS2200 Objects and Iterators Slide 22

Changes to the iterator. . .

class BasicQueueIterator implements Iterator {
private QueueCyclic backingQ;
private int current;
private int expectedModCount;

public Object next() {
if (backingQ.modCount != expectedModCount)
throw new ConcurrentModificationException();

if (!hasNext())
throw new NoSuchElementException("No more elements.");

else {
Object temp = backingQ.items[current];
current = (current+1)%backingQ.items.length;
return temp;

}
}

c© Tim French CITS2200 Objects and Iterators Slide 23

4. Inner Classes — A Better Way to Iterate

From a software engineering point-of-view, the way we have implemented our iter-
ator is not ideal:

• private variables of QueueCyclic were given “package” access so they could
be accessed from BasicQueueIterator — now they can be accessed from
elsewhere too

• BasicQueueIterator is only designed to operate correctly with QueueCyclic
(implementation-specific) but there is nothing preventing applications trying to
use it with other implementations

Java provides a tidier way. . . inner classes.

c© Tim French CITS2200 Objects and Iterators Slide 24

Inner classes are declared within a class:

public class MyClass {

// fields

// methods

private class MyInnerClass extends MyInterface {

// fields

// methods
}

...

public MyInterface getMyInnerClass() {...}
}

c© Tim French CITS2200 Objects and Iterators Slide 25

The Inner class is able to access all of the private fields and methods of the outer
class.

This gives us a very powerful method to control access to a data structure. The
code of the inner class has free range over the instance variables of the outer class,
but users can only access the inner class through the prescribed interface.

Inner classes are used extensively in Object Oriented Programming for call backs,
remote method invocation, or listener classes.

c© Tim French CITS2200 Objects and Iterators Slide 26

Cyclic queue implementation using an inner class. . .

import java.util.Iterator;
public class QueueCyclic implements Queue {

private Object[] items; // private again
private int first, last; //

...

public Iterator iterator() {
return new BasicQueueIterator(); // no "this"

}

private class BasicQueueIterator implements Iterator {

private int current;
// no need to store backing queue

c© Tim French CITS2200 Objects and Iterators Slide 27

private BasicQueueIterator() { // constructed by outer class
current = first; // variable accessed directly

} // no passing of backing queue

public boolean hasNext() {
return !isEmpty() &&
((last >= first && current <= last) ||
(last < first && (current >= first || current <= last)))

}
} // end of inner class

} // end of QueueCyclic

Q: What other structures have we seen where the use of inner classes would be
appropriate?

c© Tim French CITS2200 Objects and Iterators Slide 28

4.1 Foreach

Another Java 5 feature is the new control structure foreach. This can be used for
iteration through a collection of elements. For example, the following code:

int[] array = {0,2,4};
for (int i : array)
System.out.println(i);

means the same as:

int[] array = {0,2,4};
for (int i = 0; i < array.length; i++)
System.out.println(array[i]);

But its use is not just restricted to arrays. Indeed, any object with a iterator()
method can be used!

c© Tim French CITS2200 Objects and Iterators Slide 29

5. Summary

• ADTs can be made more general through the use of objects and casting

• generics provide a “cleaner” mechanism of achieving the same functionality

• iterators are a means of traversing a collection of elements

• the use of inner classes simplifies the construction of iterators

c© Tim French CITS2200 Objects and Iterators Slide 30

