
CITS2200 Data Structures and Algorithms

Topic 5

Lists

•Why lists?
• List windows
• Specification
• Block representation
• Singly linked representation
• Performance comparisons

Reading: Weiss, Chapter 17.
c© Tim French CITS2200 Lists Slide 1

1. Introduction

Queues and stacks are restrictive — they can only access one position within the
data structure (“first” in queue, “top” of stack)

In some applications we want to access a sequence at many different positions:

eg. Text editor — sequence of characters, read/insert/delete at any point

eg. Bibliography — sequence of bibliographic entries

eg. Manipulation of polynomials

eg. List of addresses
...

In this section, we introduce the List ADT which generalises stacks and queues.

c© Tim French CITS2200 Lists Slide 2

2. List Windows

We will use the word “window” to refer to a specific position in the list:

• maintain a distinction from “reference” or “index” which are specific implemen-
tations

• maintain a distinction from “cursor” which is most commonly used as an appli-
cation of a window in editing

May be several windows, eg. . .

a _ m i s s s p e l t _ w o r d

before first after lastcursor

c© Tim French CITS2200 Lists Slide 3

Our List ADT will provide explicit operations for handling windows.

The following specification assumes that w is a Window object, defined in a separate
class. Different window objects will be needed for different List implementations

⇒ a List class and a companion Window class will be developed together.

Note: A window class is generally not good software engineering practice as there
is no coupling between the List and the window. Instead, modern ADTs specify list
operations in terms of iterators.

c© Tim French CITS2200 Lists Slide 4



3. List Specification

! Constructors

1. List(): Initialises an empty list with two associated window positions, before first
and after last.

! Checkers

2. isEmpty(): Returns true if the list is empty.

3. isBeforeFirst(w): True if w is over the before first position.

4. isAfterLast(w): True if w is over the after last position.

!Manipulators

5. beforeFirst(w): Initialises w to the before first position.

6. afterLast(w): Initialises w to the after last position.

7. next(w): Throws an exception if w is over the after last position, otherwise
moves w to the next window position.

c© Tim French CITS2200 Lists Slide 5

8. previous(w): Throws an exception if w over is the before first position, otherwise
moves w to the previous window position.

9. insertAfter(e,w): Throws an exception if w is over the after last position, other-
wise an extra element e is added to the list after w.

10. insertBefore(e,w): Throws an exception if w is over the before first position,
otherwise an extra element e is added to the list before w.

11. examine(w): Throws an exception if w is in the before first or after last position,
otherwise returns the element under w .

12. replace(e,w): Throws an exception if w is in the before first or after last position,
otherwise replaces the element under w with e and returns the old element.

13. delete(w): Throws an exception if w is in the before first or after last position,
otherwise deletes and returns the element under w , and places w over the next
element.

c© Tim French CITS2200 Lists Slide 6

3.1 Simplifying Assumptions

Allowing multiple windows can introduce problems. Consider the following use of
the List ADT:

Window w1 = new Window();

Window w2 = new Window();

beforeFirst(w1); // Initialise first window

next(w1); // Place over first element

beforeFirst(w2); // Initialise second window

next(w2); // Place over first element

delete(w1); // Delete first element

Our specification doesn’t say what happens to the second window!

For now, we will assume only one window will be used at a single time.

c© Tim French CITS2200 Lists Slide 7

4. Block Representation

List is defined on a block (array). . .

public class ListBlock {

private Object[] block; // Holds general objects

private int before; // An index to the before first position

private int after; // iAn ndex to the after last position

block.length−11 2 3 4 5 6 7 8 9 10 11 120
m i s s s p e l t

before = −1 after = 9

c© Tim French CITS2200 Lists Slide 8



Constructor

public ListBlock (int size) {

block = new Object[size];

before = -1;

after = 0;

}

block.length−11 2 3 4 5 6 7 8 9 10 11 120
m i s s s p e l t

before = −1 after = 9

c© Tim French CITS2200 Lists Slide 9

Windows

Some ADTs we have created have implicit windows — eg Queue has a “window”
to the first item.

There was a fixed number of these, and they were built into the ADT implementation
— eg a member variable first held an index to the block holding the queue.

For lists, the user needs to be able to create arbitrarily many windows ⇒ we
define these as separate objects.

c© Tim French CITS2200 Lists Slide 10

For the block representation, they just hold an index. . .

public class WindowBlock {

public int index;

public WindowBlock () {}

}

The index is then initialised by a call to beforeFirst or afterLast.

public void beforeFirst (WindowBlock w) {w.index = before;}

block.length−1

index=−1

ListBlock

WindowBlock

1 2 3 4 5 6 7 8 9 10 11 120
m i s s s p e l t

before = −1 after = 9

c© Tim French CITS2200 Lists Slide 11

next and previous simply increment or decrement the window position. . .

public void next (WindowBlock w) throws OutOfBounds {

if (!isAfterLast(w)) w.index++;

else

throw new OutOfBounds("Calling next after list end.");

}

examine and replace are simple array assignments/lookups.

c© Tim French CITS2200 Lists Slide 12



Insertion and deletion may require moving many elements
⇒ worst-case performance — linear in size of block

eg. insertBefore

m s s

m i s s s p e l t

l ts p e
1110987654321

109876543210

0

11

From an ‘abstract’ point of view, the window hasn’t moved — it’s still over the
same element. However, the ‘physical’ location has changed.

c© Tim French CITS2200 Lists Slide 13

public void insertBefore (Object e, WindowBlock w) throws

OutOfBounds, Overflow {

if (!isFull()) {

if (!isBeforeFirst(w)) {

for (int i = after-1; i >= w.index; i--)

block[i+1] = block[i];

after++;

block[w.index] = e;

w.index++;

}

else throw new OutOfBounds ("Inserting before start.");

}

else throw new Overflow("Inserting in full list.");

}

c© Tim French CITS2200 Lists Slide 14

eg. delete

m i s s s p e l t

m i s s p e l t

1110987654321

1110987654321

0

0

The window has moved from an ‘abstract’ point of view, although the ‘physical’
location is the same.

c© Tim French CITS2200 Lists Slide 15

5. Singly Linked Representation

? m i s s ?

before after

null

Uses two sentinel cells for before first and after last:

• previous and next always well-defined, even from first or last element

• Constant time implementation for beforeFirst and afterLast

Empty list just has two sentinel cells. . .

c© Tim French CITS2200 Lists Slide 16



public class ListLinked {

private Link before;

private Link after;

public ListLinked () {

after = new Link(null, null);

before = new Link(null, after);

}

public boolean isEmpty () {return before.successor == after;}

c© Tim French CITS2200 Lists Slide 17

Windows

public class WindowLinked {

public Link link;

public WindowLinked () {link = null;}

}

eg.

public void beforeFirst (WindowLinked w) {w.link = before;}

public void next (WindowLinked w) throws OutOfBounds {

if (!isAfterLast(w)) w.link = w.link.successor;

else

throw new OutOfBounds("Calling next after list end.");

}

Why don’t we just use a Link here?

c© Tim French CITS2200 Lists Slide 18

insertBefore and delete

Problem — need previous cell! To find this takes linear rather than constant time.

One solution: insert after and swap items around

m s

s

i

w

m s s

m s s

s

w

w

c© Tim French CITS2200 Lists Slide 19

public void insertBefore (Object e, WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) {

w.link.successor = new Link(w.link.item, w.link.successor);

if (isAfterLast(w)) after = w.link.successor;

w.link.item = e;

w.link = w.link.successor;

}

else throw new OutOfBounds ("inserting before start of list");

}

Alternative solution: define window value to be the link to the cell previous to the
cell in the window — Exercise.

c© Tim French CITS2200 Lists Slide 20



5.1 Implementing previous

To find the previous element in a singly linked list we must start at the first sentinel
cell and traverse the list to the current window, while storing the previous position. . .

public void previous (WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) {

Link current = before.successor;

Link previous = before;

while (current != w.link) {

previous = current;

current = current.successor;

}

w.link = previous;

}

else throw new OutOfBounds ("Calling previous before start of list.");

}

This is called link coupling — linear in size of list!
c© Tim French CITS2200 Lists Slide 21

Note: We have assumed (as in previous methods) that the window passed is a
valid window to this List.

In this case if this is not true, Java will throw an exception when the while loop
reaches the end of the list.

c© Tim French CITS2200 Lists Slide 22

6. Performance Comparisons

Operation Block Singly linked
List 1 1
isEmpty 1 1
isBeforeFirst 1 1
isAfterLast 1 1
beforeFirst 1 1
afterLast 1 1
next 1 1
previous 1 n
insertAfter n 1
insertBefore n 1
examine 1 1
replace 1 1
delete n 1

c© Tim French CITS2200 Lists Slide 23

In addition to a fixed maximum length, the block representation takes linear time
for insertions and deletions.

The singly linked representation wins on all accounts except previous, which we
address in the next sections. . .

c© Tim French CITS2200 Lists Slide 24



7. Doubly Linked Lists

Singly linked list: previous is linear in worst case — may have to search through
the whole list to find the previous window position.

One solution — keep references in both directions!

?

before

m i s ?

after

nullnull

Called a doubly linked list.

Advantage: previous is similar to next — easy to program and constant time.

Disadvantage: extra storage required in each cell, more references to update.

c© Tim French CITS2200 Lists Slide 25

8. Circularly Linked Lists

The doubly linked list has two wasted pointers. If we link these round to the other
end. . .

? m i s ?

list

Called a circularly linked list.

Advantages: (over doubly linked)

• Only need a reference to the first sentinel cell.

• Elegant!

c© Tim French CITS2200 Lists Slide 26

Redefine Link

public class LinkDouble {

public Object item;

public LinkDouble successor;

public LinkDouble predecessor; // extra cell

Redefine List

public class ListLinkedCircular {

private LinkDouble list; // just one reference

c© Tim French CITS2200 Lists Slide 27

Code for previous

public void previous (WindowLinked w) throws

OutOfBounds {

if (!isBeforeFirst(w)) w.link = w.link.predecessor;

else throw

new OutOfBounds("calling previous before start of list ");

}

Cf. previous previous!

c© Tim French CITS2200 Lists Slide 28



9. Performance — List

Operation Block Singly linked Doubly linked
List 1 1 1
isEmpty 1 1 1
isBeforeFirst 1 1 1
isAfterLast 1 1 1
beforeFirst 1 1 1
afterLast 1 1 1
next 1 1 1
previous 1 n 1
insertAfter n 1 1
insertBefore n 1 1
examine 1 1 1
replace 1 1 1
delete n 1 1

c© Tim French CITS2200 Lists Slide 29

We see that the doubly linked representation has superior performance. This needs
to be weighed against the additional space overheads.

Rough rule

• previous commonly used ⇒ doubly (circularly) linked

• previous never or rarely used ⇒ singly linked

10. Summary

• Lists generalise stacks and queues by enabling insertion, examination, and dele-
tion at any point in the sequence.

• Insertion, examination, and deletion are achieved using windows on the list.

• Explicit window manipulation is included in the specification of our List ADT.

• A block representation restricts the list size and results in linear time performance
for insertions and deletions.

c© Tim French CITS2200 Lists Slide 30

• A singly linked representation allows arbitrary size lists, and offers constant time
performance in all operations except previous.

• Doubly (and Circularly) Linked Lists have constant time performance on all
operations but needs extra space

c© Tim French CITS2200 Lists Slide 31


