
CITS2200 Data Structures and Algorithms

Topic 4

Queues

• Implementations of the Queue ADT

• Queue specification

• Queue interface

• Block (array) representations of queues

• Recursive (linked) representations of queues

Reading: Weiss, Chapter 16
c© Tim French CITS2200 Queues Slide 1

1. Educational Aims

The aims of this topic are to:

1. Introduce two main ways of implementing collection classes:

• block (array-based) implementations, and

• linked (recursive) implementations

2. Introduce pros and cons of the two structures.

3. Develop basic skills in manipulating these two kinds of structures.

Note the ADT just specifies the operations available, and the results of applying
those operations. There are many different ways to implement any given ADT.

c© Tim French CITS2200 Queues Slide 2

2. Specification

Recall that in a queue, or FIFO, elements are added to one end, and read/deleted
from the other, in chronological order.

1. Queue(): create an empty queue

2. isEmpty(): return true if the queue is empty, false otherwise

3. enqueue(e): e is added as the last item in the queue

4. examine(): return the first item, error if the queue is empty

5. dequeue(): remove and return first item, error if queue empty

c© Tim French CITS2200 Queues Slide 3

2.1 Classification of ADT Operations:

constructors are used to create data structure instances

eg. Queue

checkers report on the “state” of the data structure

eg. isEmpty

manipulators examine and modify data structures

eg. enqueue, examine, dequeue

c© Tim French CITS2200 Queues Slide 4

3. Interface

import CITS2200.*;

public interface Queue { // some javadoc comments omitted

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/
public boolean isEmpty ();

/**
* add a new item to the queue
* @param a the item to add
*/
public void enqueue (Object a);

c© Tim French CITS2200 Queues Slide 5

/**
* examine the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public Object examine () throws Underflow;

/**
* remove the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public Object dequeue() throws Underflow;

c© Tim French CITS2200 Queues Slide 6

4. Block Representations

Simplest representation:

• sequence of elements stored in array

• indices (counters) indicating first and last element

? a b b a ? ? ? ?
1 2 3 4 5 6 7 8 9

first last

?
0

c© Tim French CITS2200 Queues Slide 7

Disadvantage: queue will be bounded! — can only implement a variation on the
spec:

3. enqueue(e): e is added as the last item in the queue, or error if the queue is
full

For convenience, we will include another checker:

6. isFull(): return true if the queue is full, false otherwise

c© Tim French CITS2200 Queues Slide 8

4.1 Class Declaration

import CITS2200.*;

/**
* Block representation of a queue.
* The queue is bounded.
*/
public class QueueBlock implements Queue {

Notice implementing interface — class will only compile without error if it provides
all methods specified in the interface. (Otherwise you can declare the class as
abstract).

c© Tim French CITS2200 Queues Slide 9

/**
* an array of queue items
*/
private Object[] items;

/**
* index for the first item
*/
private int first;

/**
* index for the last item
*/
private int last;

c© Tim French CITS2200 Queues Slide 10

4.2 Modifiers

enqueue, examine and dequeue are straightforward. . .

/**
* add a new item to the queue
* @param a the item to add
* @exception Overflow if queue is full
*/
public void enqueue (Object a) throws Overflow {
if (!isFull()) {
last++;
items[last] = a;

}
else throw new Overflow("enqueuing to full queue");

}

c© Tim French CITS2200 Queues Slide 11

/**
* examine the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public Object examine () throws Underflow {
if (!isEmpty()) return items[first];
else throw new Underflow("examining empty queue");

}

c© Tim French CITS2200 Queues Slide 12

/**
* remove the first item in the queue
* @return the first item
* @exception Underflow if the queue is empty
*/
public Object dequeue() throws Underflow {
if (!isEmpty()) {
char a = items[first];
first++;
return a;

}
else throw new Underflow("dequeuing from empty queue");

}

c© Tim French CITS2200 Queues Slide 13

4.3 Constructors and Checkers

To see how to code the constructor and isEmpty consider successive deletions until
first catches last.

a ?? ? ? ? ? ?

last last

firstfirst

The queue has one element if first == last, and is therefore empty when first
== last + 1 . . .

c© Tim French CITS2200 Queues Slide 14

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/

public boolean isEmpty () {return first == last + 1;}

Java arrays number from 0, so first is initialised to 0. . .

/**
* initialise a new queue
* @param size the size of the queue
*/
public QueueBlock (int size) {
items = new char[size];
first = 0;
last = -1;

}

c© Tim French CITS2200 Queues Slide 15

The queue is full if there is simply no room left in the array. . .

/**
* test whether the queue is full
* @return true if the queue is full, false otherwise
*/
public boolean isFull () {return last == items.length - 1;}

Notes

• length is an instance variable of an array object, and contains the size of the
array.

• Since arrays number from 0, the nth element has index n− 1.

c© Tim French CITS2200 Queues Slide 16

4.4 Alternative Block Implementations

Problem: as elements are deleted the amount of room left for the queue is eroded
— the space in the array is not reused.

Solution: wrap queue around. . .

first

f e r na n d o

last

9876543210

Conceptually, this forms a cyclic queue (or cyclic buffer). . .

c© Tim French CITS2200 Queues Slide 17

a

n

d

o

n
r

e

f
firstlast

Effects on the above program. . .

c© Tim French CITS2200 Queues Slide 18

• first and last must be incremented until they reach the end of the array,
then reduced to 0. This can be achieved in a concise way using the % (“mod”)
operation. eg:

public void enqueue (Object a) {
if (!isFull()) {
last = (last + 1) % items.length;
items[last] = a;

}
else throw new Overflow("enqueuing to full queue");

}

c© Tim French CITS2200 Queues Slide 19

• A queue is now empty when:

first == (last + 1) % items.length

Problem: The above condition also represents a full queue!

One solution — define queue as full when it contains items.length-1 elements
and use the condition:

first == (last + 2) % items.length

first

f e r na n d o
9876543210

last

s

c© Tim French CITS2200 Queues Slide 20

But now a queue created to hold n objects only has room for n− 1 objects

⇒ modify the constructor. . .

public QueueCyclic (int size) {
items = new char[size+1]; // add 1 to array size
first = 0;
last = size; // start last at end of block

}

Another solution — instead of two indices, keep one index for the first element,
and a count of the size of the queue.

⇒ Exercises!

c© Tim French CITS2200 Queues Slide 21

5. Recursive (Linked) Representation

Biggest problem with block representation — predefined queue length

Solution: use a recursive structure!

Recall singly linked list. . .

abc null
first

c© Tim French CITS2200 Queues Slide 22

For a queue, we need to be able to access both ends — one to insert and one to
delete.

Although the end can be accessed by following the references down the list, it is
more efficient to store references to both ends. . .

abc null

lastfirst

Note, it is important that the arrows point from first to last.

c© Tim French CITS2200 Queues Slide 23

5.1 Class Declaration

import CITS2200.*;
/**
* Linked list representation of a queue of characters.
*/
public class QueueLinked implements Queue {

/**
* the front of the queue, or null if queue’s empty
*/
private Link first;

/**
* the back of the queue, or null if queue’s empty
*/
private Link last;

}

c© Tim French CITS2200 Queues Slide 24

5.2 Constructors and Checkers

Empty queue:

first → null
last → null

Queue and isEmpty are easy. . .

c© Tim French CITS2200 Queues Slide 25

/**
* initialise a new Queue
*/
public QueueLinked () {
first = null;
last = null;

}

/**
* test whether the queue is empty
* @return true if the queue is empty, false otherwise
*/
public boolean isEmpty () {return first == null;}

c© Tim French CITS2200 Queues Slide 26

5.3 Examining and Dequeueing

Examining and dequeueing are easy!

Examining is the same as for the linked list. . .

public Object examine () throws Underflow {
if (!isEmpty()) return first.item;
else throw new Underflow("examining empty queue");

}

c© Tim French CITS2200 Queues Slide 27

Dequeueing is the same as deleting in the linked stack, except that when the last
item is dequeued, last must be assigned null. . .

aa null null null

space not reclaimed

first last last first first last

c© Tim French CITS2200 Queues Slide 28

public Object dequeue () throws Underflow {
if (!isEmpty()) {
Object o = first.item;
first = first.successor;
if (isEmpty()) last = null;
return o;

}
else throw new Underflow("dequeuing from empty queue");

}

c© Tim French CITS2200 Queues Slide 29

5.4 Enqueueing

Enqueueing is also easy! Just reassign the null reference at the end of the queue to
a reference to another link, and move last to the new last element. . .

ab null

first last

ab b null

ab b null

first last

first last

c© Tim French CITS2200 Queues Slide 30

. . . unless the queue is empty, then first and last must both reference a new
link. . .

public void enqueue (Object a) {
if (isEmpty()) {
first = new LinkChar(a,null);
last = first;

}
else {
last.successor = new LinkChar(a,null);
last = last.successor;

}
}

c© Tim French CITS2200 Queues Slide 31

6. Summary

• block (array with indices to endpoints)

– bounded

– may reserve space unnecessarily

– ‘eroded’ with use

• block with wrap around (cyclic)

– bounded

– space reserved unnecessarily

– not ‘eroded’

• recursive (linked list with references to endpoints)

– unbounded

– no unnecessary space wasted

– no ‘erosion’ of space — garbage collection

c© Tim French CITS2200 Queues Slide 32

