Dictionary
Possible data structures

- Linked list (windowed)
- Block array

- Binary search trees
 - AVL tree
 - Red Black tree
 - B-tree
 - Splay tree

- Faster alternatives
Binary search tree (BST)

- for every internal node u, all nodes in u’s left subtree precede u in the ordering and all nodes in u’s right subtree succeed u in the ordering.
 - In-order traversal will give a sorted list
BST: Searching

If information is stored in a binary search tree, a simple recursive “divide and conquer” algorithm can be used to find elements:

```java
if (t.isEmpty()) terminate unsuccessfully;
else {
    r becomes the element on the root node of t;
    if (e equals r) terminate successfully;
    else if (e < r) repeat search on left subtree;
    else repeat search on right subtree;
}
```
• Insert is always at a leaf
• perform a search for the element as above
• if the element is found, take no further action
• if an empty node is reached, insert a new node containing the element
BST: Delete

- delete is straightforward if the element is found on a node with at least one external child
 - just use the standard Bintree delete operation
 - Leaf is easy
 - One child is easy too (replace it with the child)
BST: Delete (cont.)

- Two children
 - i) replace the deleted element with its predecessor — note that the predecessor will always have an empty right child
 - One left; then far right
 - ii) delete the predecessor

You can use the successor concept as well.
Just opposite
Balancing Trees

• Note that the delete procedure described here has a tendency over time to skew the tree to the right — as we have seen this will make it less efficient.

• Alternative: alternate between replacing with predecessor and successor.

• In general, it is beneficial to try to keep the tree as “balanced” or “complete” as possible to maintain search efficiency.

• There are a number of data structures that are designed to keep trees balanced — B-trees, AVL-trees and Red-black trees.
AVL Trees

• Self-balancing trees

• An AVL tree is a binary search tree where
 • for every node, the height of the left and right subtrees differ by at most one.
 • This means the depth of any external node is no more than twice the depth of any other internal node.

Nodes are marked with the height of the right sub-tree minus the height of the left sub-tree.
AVL Tree: Height

- What is the height of an AVL tree of N nodes
- Converse problem: what is the minimum number of nodes are in an AVL tree of h
- *(say the right subtree has height 1 more than left subtree for every node)*

$$N_h = 1 + N_{h-1} + N_{h-2}$$

So:

$$N_h > F_h; \text{ golden ratio: } F_h = \frac{\varphi^h}{\sqrt{5}}$$

$$\frac{\varphi^h}{\sqrt{5}} < N$$

$$h \approx \log_\varphi N = 1.44 \log N$$

$$\varphi = \frac{1 + \sqrt{5}}{2} = 1.6180339887...$$
AVL Tree: Height

- \(N_h = 1 + N_{h-1} + N_{h-2} \)
- \(N_h > 1 + 2N_{h-2} \)
- \(N_h > 2N_{h-2} = O(2^{h/2}) \)
- \(h=2 \log N \)
AVL Tree Operations

• Since an AVL tree is a binary search tree, the searching algorithm is exactly the same as for a binary tree.

• However, the insertion and deletion operations must be modified to maintain the balance of the tree.
AVL Tree: Insert

<table>
<thead>
<tr>
<th>Node</th>
<th>Height of left subtree – height of right subtree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

```
 10
   / \
   5   13
  / \   /
 1  6  17
  ```
AVL Tree: Insert

<table>
<thead>
<tr>
<th>Node</th>
<th>Height of left subtree – height of right subtree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>-2</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>
AVL: Insert

- 4 possible situations:
 - Insert into the left subtree of the left child (LL Rotation)
 - Insert into the right subtree of the right child (RR Rotation)
 - Insert into the left subtree of the right child (RL Rotation)
 - Insert into the right subtree of the left child (LR Rotation)
Rotation
LL Rotation
RR Rotation
LR Rotation
RL Rotation
AVL Insert

• If the unbalanced node’s height is:
 • Positive(>=2: left side)
 • If the left child’s height s
 • Positive : LL rotation
 • Negative: LR rotation
 • Negative (<=-2: right side)
 • If the right node’s height is:
 • Positive: RL rotation
 • Negative: RR rotation
AVL Insert: Need to check all
AVL Insert: Summary

• To insert an element, we:
 • 1. Insert the element into an external node (as per usual for a binary search tree).
 • 2. Starting with its parent, check each ancestor of the new node to ensure the left and right subtree heights differ by less than two.
 • 3. If we find a node such that one child has height $k - 2$ and the other has height k, then we perform a rotation to restore balance.
AVL Tree: Delete

• Note that both rotations do not increase the height of the sub-tree, so insertion only needs to be done at the lowest unbalanced ancestor.

• To delete an element, we:
 • Delete the element (as per usual for a binary search tree).
 • Starting with its parent, check each ancestor of the new node to make sure it’s balanced.
 • If any node is not balanced, perform the necessary rotation (as above).
 • Continue to check the ancestors of the deleted node up to the root.
AVL Tree: Complexity

• Rotations are constant time operations.
• Insertions and deletions involve searching the tree for the element \(O(h) \), where \(h \) is the height of the tree) and then checking every ancestor of that element \(O(h) \) in the worst case).
• Complexity follows from the claim: the height of an AVL tree is less than \(2 \log n \) where \(n \) is the number of elements in the tree.
B-Tree

• A B-tree is a tree data structure that allows searching, insertion, and deletion in amortized logarithmic time.
• Each node of a B-tree can contain multiple items and multiple children (these numbers can be varied to tweak performance).

We will consider 2-3 B-trees, where each node can contain up to two items and up to three children.
B-Tree

• If there is just one item in the node, then the B-Tree is organised as a binary search tree: all items in the left sub-tree must be less than the item in the node, and all items in the right sub-tree must be greater.

• If there are two elements in the node, then:
 • all items in the left sub-tree must be less than the smallest item in the node
 • all items in the middle sub-tree must be between the two items in the node
 • all elements in the right sub-tree must be greater than the largest item in the node

• Also, every non-leaf node must have at least two successors and all leaf nodes must be at the same level.
Red-Black Tree

• A red-black tree is another variation of a binary search tree that is slightly more efficient (and complicated) than B-trees and AVL trees.

• A red-black tree is a binary tree where each node is coloured either red or black such that the colouring satisfies:
 • the root property — the root is black
 • the external property — every external node is black
 • the internal property — the children of a red node are black
 • the depth property — every external node has the same number of black ancestors.
Red-Black tree
Red-Black tree: Height

- A subtree rooted at node v has at least $2^{bh(v)} - 1$ internal nodes
 - $bh(v) =$ the number of black nodes (not counting v if it is black) from v to any leaf in the subtree (called the black-height).
Red-Black tree: Insert

• Use the BST insert algorithm to add K to the tree
• colour the node containing K red
• restore red-black tree properties (if necessary)