
Threshold Concepts in Computer Science:
Do they exist and are they useful?

Jonas Boustedt
Department of Mathematics,

Natural, and Computer
Science Högskolan i Gävle

S80176 Gävle, Sweden

bjt@hig.se

Anna Eckerdal
Department of Information

Technology
Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Robert McCartney
Department of Computer
Science and Engineering
University of Connecticut

Storrs, CT USA

robert@cse.uconn.edu

Jan Erik Moström
Department of Computing Science

Umeå University
901 87 Umeå, Sweden

jem@cs.umu.se

Mark Ratcliffe
Department of Computer Science

University of Wales
Aberystwyth, Wales

mbr@aber.ac.uk

Kate Sanders
Department of Math and Computer Science

Rhode Island College
Providence, RI USA

ksanders@ric.edu

Carol Zander
Computing & Software Systems
University of Washington, Bothell

Bothell, WA USA

zander@u.washington.edu

ABSTRACT
Yes, and Yes.

We are currently undertaking an empirical investigation of
“Threshold Concepts” in Computer Science, with input from
both instructors and students. We have found good empir-
ical evidence that at least two concepts—Object-oriented
programming and pointers—are Threshold Concepts, and
that there are potentially many more others.

In this paper, we present results gathered using various
experimental techniques, and discuss how Threshold Con-
cepts can affect the learning process.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education

General Terms
Measurement, Experimentation

Keywords
Threshold Concepts, learning theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07,March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

1. INTRODUCTION
Computer science is a young, rapidly changing discipline;

we have had relatively few years to study the ways in which
students learn and how to help them most effectively. Meyer
and Land [13] have proposed using “Threshold Concepts” as
a way of characterizing particular concepts that might be
used to organize the educational process. The idea has the
potential to help us focus on those concepts that are most
likely to block students’ learning [4]. A subset of the core
concepts in a discipline, Threshold Concepts are defined by
Meyer and Land [13] are:

• transformative: they change the way a student looks
at things in the discipline.

• integrative: they tie together concepts in ways that
were previously unknown to the student.

• irreversible: they are difficult for the student to un-
learn.

• potentially troublesome (as in [15]) for students: they
are conceptually difficult, alien, and/or counter-intuitive.

• often boundary markers: they indicate the limits of a
conceptual area or the discipline itself.

This paper describes an ongoing project aimed at empir-
ically identifying Threshold Concepts in computer science.
In a multi-national, multi-institutional study, we have gath-
ered data from both educators and students. The paper
outlines experimental techniques, issues raised, and results
to date. Information about how Threshold Concepts fit with
other learning theories and how they can be put into context

504



with other ways to organize computer science concepts can
be found in [5].

Section 2 describes the techniques we have used to gather
data about potential Threshold Concepts from the perspec-
tive of both instructors and students. In Section 3 we present
the results of a preliminary analysis of the data, including
the identification of two Threshold Concepts in computing
with some associated evidence. Section 4 looks at implica-
tions for educators and finally, in Section 5, we present our
preliminary conclusions and discuss the future directions of
this research effort.

2. DATA GATHERING AND ANALYSIS
The study began by gathering data from instructors in

computer science. This was followed by a brief analysis and
a much more in-depth study of graduating seniors.

2.1 The instructors: informal interviews and
surveys

In June 2005, at the Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE), 36 in-
structors from nine countries were interviewed and asked for
suggestions of concepts that meet the criteria for a Thresh-
old Concept. These interviews were unstructured and done
in a fairly conversational style.

From these, we gained much insight. First, the idea of
Threshold Concepts is compelling: nearly everyone we spoke
with was immediately interested. In total 33 concepts were
suggested, with the most popular being: levels of abstrac-
tion; pointers; the distinction between classes, objects, and
instances; recursion and induction; procedural abstraction;
and polymorphism. Second, while some concepts came up
again and again, there was no universal consensus.

In November 2005, we gave a poster and had discussions
with researchers at the Koli Calling 2005 Conference on
Computer Science Education in Finland [12] and used a
questionnaire and interviews to gather data more systemat-
ically from conference participants. The results were similar
to those collected at ITiCSE but it was quite apparent that
instructors focus on “difficult to learn” more than any other
aspects of the concepts they discuss.

2.2 The students: semi-structured interviews
Given the tentative list of concepts derived from instruc-

tors and the literature ([1, 2, 3, 17, 18] e.g.), we began to
investigate the question of whether these—or any—concepts
are experienced by students as thresholds.

We chose to initially interview graduating students, since
they were more likely than novices to have mastered the
relevant concepts, and to have developed some perspective.
So far we have completed 16 interviews with students at
seven institutions in a total of three countries. The script
for these interviews is given in Figure 1.

We started by addressing the troublesome criterion, ask-
ing students for concepts they found difficult at first (places
where they were initially “stuck”). From these, we selected
one concept to pursue in depth and addressed the transfor-
mative, integrative, and irreversible criteria in that context.
We did not examine the boundary marker criterion, as it
is related more to disciplinary boundaries and less to indi-
vidual experience. The interviewers agreed in advance on a
list of five Threshold Concept candidates (control structures,
thinking sequentially, parameters, objects, memory model)

1. Could you tell me about something where you were
stuck at first but then became clearer? (Subject an-
swers <X>.)

The rest of this session will now focus on <X>.

2. Can I start by asking you to tell me your understand-
ing of <X>?

3. Assume that you were explaining <X> to someone
just learning this material, how would you do it?

4. Tell me your thoughts, your reactions, before, during
and after the process of dealing with <X>.

5. Can you tell me what helped you understand <X>?

6. Can you describe how you perceived/experienced
<X> while you were stuck and how you per-
ceived/experienced it afterwards?

7. Based on your experience, what advice would you give
to help other students who might be struggling with
<X>?

8. Please tell me what other things you need to under-
stand in order to gain a good understanding of <X>.

9. Can you tell me how your understanding of <X> has
affected your understanding of other things?

10. Was your understanding of <X> something that you
had to keep reviewing or having learned it once were
you OK with it?

11. Describe how and in what context you have used <X>
since you learned it?

12. Is there something more you want to tell me about
<X>?

13. To finish the interview, can you tell me whether there
are any other things where you were stuck at first but
then became clearer? I promise I won’t ask you about
them in detail!

Figure 1: Script Excerpt for Student Interview

that had come up repeatedly in instructor interviews. If the
student mentioned one of those, that concept was chosen.

The aim of this deeper investigation was twofold. It en-
abled us to gather evidence as to whether specific concepts
met the requirements for Threshold Concepts (Questions 1,
4, 6, 8, 9, 10 in Figure 1). In addition, it gave us data for an
analysis (in progress) of graduating students’ understanding
of central concepts (Questions 2, 3, 5, 12 in Figure 1).

For analysis, the student interviews were transcribed ver-
batim and where necessary, translated into English by the
interviewer.

3. THRESHOLD CONCEPTS IN COMPUTER
SCIENCE

Of the concepts discussed in depth by the students, we
selected two that seemed promising based on the interview
content and closely examined the interviews regarding those
concepts. For both concepts – object-oriented programming
(OOP) and pointers – we found evidence that they satisfy
the criteria for Threshold Concepts.

505



3.1 Object-oriented programming
Object-oriented programming is experienced as difficult

both to teach [8, 16] and to learn [9, 19]. When Eckerdal and
Thuné [6] interviewed first-year students after their first pro-
gramming course on their understanding of object-oriented
concepts, many students stated that they found the concepts
troublesome despite great effort to learn them.

The interviews give further evidence of OOP as a Thresh-
old Concept. One student subject discussed OOP as trou-
blesome to learn:

Subject8: Stuck at first – I would have to say the
initial object-oriented programming. Knowing how
classes communicate, how you communicate between
classes and really understanding how objects work...

The researcher performing the interview asks the sub-
ject about the integrativeness of OOP later in the interview
by asking if once they understood OOP, were there other
things they then understood. The subject discusses a multi-
threaded programming course.

Subject8: Well, for instance, the class we did for soft-
ware engineering, what we did right now, the server
that I wrote, each client that connects to the server, I
thought of it almost as an object, which it is basically.
And then that client connection would be held on to
while waiting for other connections. And then there’d
be this huge array of connections. And then, I mean,
that wasn’t that difficult for me to grasp that concept
just because we’d kind of went over it in class, but
I just think understanding object-oriented program-
ming helped me to understand that there was this
group of objects, group of threads, group of clients,
whatever.

Interviewer: That they were all working together?

Subject8: That were all working together, exactly.
And understanding object-oriented programming, I
think, made that easy to learn; easy to understand.

This subject learned about OOP, then later learned about
multi-threaded programming, and perceived a real connec-
tion at a fairly abstract level.

Another student also indicated that object-oriented pro-
gramming is troublesome to learn:

Subject6: [...] object oriented programming was one
thing for example that took a long time before ... it
clicked. Why and how it should be used.

The researcher later seeks to find out from the same stu-
dent if object-oriented programming is irreversible by asking
if the student had to review the OOP material.

Subject6: Yes, I need to review sometimes, this is
completely clear [...], often it’s just syntactical de-
tails, [...] basic stuff is there, I’ve mainly used Java
so, sure I’m a little bit stuck in those tracks but I can
usually bring everything with me and just transfer it
to C++ for example, [...]

Interviewer: The big stuff is there so to speak

Subject6: Yes, I can get, sometimes it can take, or
yes some mistakes before I remember that, “right,
those”, [...] I can forget, to make some mistakes in the
beginning but as long as I’ve once known and done
it correctly some time then it usually comes back.

The student explains that some syntactic details might
be forgotten in a specific object-oriented programming lan-
guage, but “the basic stuff is there” (the object oriented
paradigm) and “it usually comes back”, implying object-
oriented programming is irreversible.

The quote also shows the close relation between the irre-
versible and the integrative aspects of this Threshold Con-
cept. The student explains that he/she can use the knowl-
edge gained from programming in one language and transfer
it to another language.

Later in the interview the researcher discusses the trans-
formative aspect of learning object-oriented programming
by asking about the difference in how the student looks at
problems and their solutions before and after:

Subject6: Yes, it’s like day and night, before I came
here I had ... I couldn’t ... abstract the problems on,
well to a very small extent perhaps, but today it’s ...
I can identify the problems usually in a very short
time, unless it’s very complex and difficult to under-
stand but today I only see small sub-problems and
... usually simple solutions to them. Before it was
just one large program that ... I solved sequentially
in some way and the programs looked like that ...

Discussing the same topic the interviewer later asks about
problem solving, about what role OOP played:

Subject6: It simplifies it, even if I don’t use an OO
language the OOP way of thinking can help a lot in
... in some way ... well, you can give a lot of data, you
can give it some kind object status even if it doesn’t
have its own methods etc, in that way...

The student explains that he/she looks at programming
in a completely new way after learning object-oriented pro-
gramming. The knowledge has transformed how the student
looks at problems. This is consistent with Luker [10], who
argues that learning the object-oriented paradigm, “requires
nothing less than [a] complete change of the world view.”

3.2 Pointers
The second concept identified as a potential Threshold

Concept was the use of pointers, particularly when used as
parameters. That this concept can be troublesome is illus-
trated by the following excerpt:

Subject13: And so when you implement pointers and
see then you’re like okay I need to figure out how I
modify that and it affects the memory. And then if
I reference the memory I get what back. And then
you start passing the arguments. And you have to
understand passing by reference or passing by value.
And a lot of those were definitely big hurdles right in
the beginning because I didn’t – it was just – I guess
too theoretical of a concept for me to really put in
practical sense.

The student describes the difficulties in understanding point-
ers in general and how they work with parameter passing.

Another student affirms that pointers can be troublesome:

Subject3: I know that pointers are something that a
lot of students have trouble with. [...]

Not only can we see that this student found pointers trou-
blesome, but also that they are integrative and transforma-
tive:

506



Subject3: And I think once you’ve realized that a
pointer is just pointing to a place in memory, it’s
just pointing to a location, that’s all it is. Then
I think everything will flow from that. Yeah, be-
cause you realize then that the object itself is
just a place in memory too.

Interviewer: So before you weren’t even thinking
about memory so much.

Subject3: Exactly. I didn’t at all. Like in Java,
I didn’t think about memory nearly so much. I
mean I knew that certainly memory was allo-
cated, that memory was allocated with its vari-
ables and attributes and that kind of stuff. But
I didn’t ... when I was writing a program, I
didn’t ever think about what was happening un-
derneath. Especially garbage collection.

Once the student understood how pointers work he/she was
able to use this knowledge to explain how objects and ref-
erences are implemented, thus getting an improved under-
standing of how Java works.

In another part of the interview the same student de-
scribed how the understanding of pointers has helped in
other subjects:

Subject3: Well, as I was saying, in the hardware class
and in Operating Systems, we definitely discussed
pointers and I used it both conceptually and also in,
well not in in Operating Systems, but in the hard-
ware class in assembly language, we definitely used
pointers.

We definitely were dereferencing all the time in as-
sembly language, so when we were, for example, writ-
ing to an address register, we would have to derefer-
ence it in order to get at the address to find out what
was going on at that particular address in memory.
So, definitely I used it again and again.

The clearest statement that the concept of pointers is un-
forgettable comes from an interview with Subject13 when
asked if the understanding gained needed to be reviewed to
be remembered:

Subject13: The syntax I would have to review, guar-
anteed. The syntax is –it’s a little – it’s syntax. But
the basic idea of passing by reference or value; no,
once I understood that I – every time it’s mentioned
I immediately know and understand – I can see a pic-
ture – a diagram in my head of what I’m supposed to
do. What – how the effect will work. So the concept
was not lost at all.

4. IMPLICATIONS FOR EDUCATORS
By their nature, Threshold Concepts have a number of

implications for educators. These are key concepts that stu-
dents must understand to make progress in computer sci-
ence: failing to gain this understanding and the associated
lack of progress can lead to frustration, a poor understanding
on how the discipline fits together, and increased attrition
of students. It is important, therefore, that we understand
these concepts, and how they are learned, in detail. It is
useful to know that students tend to become stuck on a par-
ticular concept, but the deeper understanding of the student

experience—how students get unstuck, and why some stu-
dents get unstuck (or perhaps never get stuck at all) while
others remain stuck—should provide ideas on how to help
students to make progress toward understanding that con-
cept. Knowing what concepts a particular Threshold Con-
cept integrates can provide the instructor with a context in
which the concept might effectively be taught.

Davies suggests that when teachers proceed on the in-
correct assumption that students have learned a Threshold
Concept, it may cause students to go forward with surface-
level learning:

In the absence of this understanding students can
only resort to learning surface routines and lan-
guage in the hope that they can pass this off as
real understanding.[4]

More interesting still, a result found in economics ([14], as
reported in [13]) was that teaching Threshold Concepts in
simplified ways can have similar bad effects: the simplified
version may be treated as “ritualized” knowledge–a superfi-
cial understanding–that makes it more difficult for the stu-
dent to ultimately learn the concept. What these results
suggest is how important it is that teachers accurately mon-
itor the level of understanding of these concepts by their stu-
dents, expecially if “going through the threshold” (in a deep-
learning sense) is necessary for their students to progress.

Looking on the bright side, however, Threshold Concepts
can provide positive opportunities to instructors. First, they
may help us manage the ever-growing curriculum. For ex-
ample, Computer Curricula 2001 (CC2001) [7] included 63
core units, each made up of several topics. If we can iden-
tify a relatively small number of Threshold Concepts within
the curriculum, instructors will be able to focus their efforts
on helping students with those concepts. Second, because
Threshold Concepts are integrative, an instructor can use
them to help students see connections within the discipline
that transcend individual course boundaries.

In some cases, it will be necessary to revisit the same
Threshold Concepts over multiple courses. We saw evidence
of this for both OOP and pointers. In object-oriented pro-
gramming, we saw a student’s understanding develop from
seeing objects as a simple encapsulation mechanism to an
appreciation for design patterns; for pointers (and the as-
sociated memory issues), the basic understanding learned
in introductory programming became richer in subsequent
courses. The students reported that crossing the thresholds
for them was a gradual process, not necessarily an “aha”
moment.

One more observation from the interviews that applies
more generally than to Threshold Concepts, is that stu-
dents (in retrospect) appreciate the value of individual work.
Nearly all, when asked to give advice to other students who
are having problems with a particular concept, included
things like “you need to work on your own”, “you need to sit
down and think about what you’re doing”, and “sit down and
work it out on paper and really understand what happens.”
Our own teaching experience is that this understanding is
not shared by all novice students.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we describe Threshold Concepts. These are

a subset of the core concepts in a discipline that are trans-
formative, integrative, irreversible, and potentially trouble-

507



some. If instructors don’t take care in introducing these
concepts to our students and monitoring their understand-
ing, students may fail to move on, or move on with only
surface knowledge of the concept.

We also describe our initial empirical investigations into
Threshold Concepts. We used both informal interviews and
questionnaires to obtain data from instructors and scripted,
semi-structured interviews to obtain data from students.

Based on these investigations, we present evidence that
Threshold Concepts do exist in computer science. We have
identified two Threshold Concepts, or perhaps broad areas
within which thresholds exist: pointers and object-oriented
programming. These were the terms our subjects used for
concepts they identified, but these concepts – object-oriented
programming in particular – are very broad. A close reading
of the interviews suggests that more specific Threshold Con-
cepts might include the way in which objects work together
(i.e., concurrency), or the ability to see large problems as
composed of a set of small sub-problems.

In future work, we plan to investigate these more spe-
cific concepts, and also some of the other candidate Thresh-
old Concepts that have been mentioned in our data. One
particularly intriguing example is the notion of translation
from one representation to another – it is certainly perva-
sive within computer science, but only one of our instructor
subjects (and none of the students) mentioned it as a can-
didate.

In addition, we have not yet analyzed the variations in
understanding associated with the concepts discussed here.
This analysis will provide an outcome space with qualita-
tively different ways to understand a certain concept (as in
[11]), information that should be immediately useful to in-
structors.

An area that we will be investigating is whether the learn-
ing of a Threshold Concept is an identifiable stage that all
learners go through, or whether it is more of an individual
phenomenon. Some of our data suggest that the Threshold
Concepts that a student identifies are strongly influenced by
his or her learning experiences–e.g., the only two subjects
who suggested “How a processor control unit works” had
taken a course where they were required to design one. In
addition, it is possible that a Threshold Concept may seem
to be universal if the concept is overly broad, as mentioned
above regarding to object-oriented programming: subjects
may agree on the broad concept, but this may be due to their
experiencing different more-specific concepts as thresholds.
We will address these issues by undertaking interviews with
a finer-grained focus on particular concepts.

We are also planning to interview novices, to see how
their perspective compares with the graduating students’.
Finally, once Threshold Concepts have been precisely identi-
fied, the next step will be to design curricula and assessment
tools to help student cross these thresholds more easily.

6. REFERENCES
[1] ACM/IEEE-CS Joint Curriculum Task Force.

Computing curriculum 1991. Report of the IEEE
Computer Society and ACM, 1990.

[2] A. Biermann. Great Ideas in Computer Science: a
gentle introduction. MIT Press, 1990.

[3] J. G. Brookshear. Computer Science: an overview.
Addison Wesley, sixth edition, 2000.

[4] P. Davies. Threshold concepts: how can we recognise
them? 2003. Paper presented at EARLI conference,
Padova. http://www.staffs.ac.uk/schools/business/
iepr/docs/etcworkingpaper(1).doc (accessed 25
August 2006).

[5] A. Eckerdal, R. McCartney, J. E. Moström,
M. Ratcliffe, K. Sanders, and C. Zander. Putting
threshold concepts into context in computer science
education. In ITiCSE-06, pages 103–107, Bologna,
Italy, June 2006.

[6] A. Eckerdal and M. Thuné. Novice Java programmers’
conceptions of “object” and “class”, and variation
theory. In ITiCSE-05, pages 89–93, 2005.

[7] Joint Task Force on Computing Curricula. Computing
Curriculum 2001, computer science volume. Report of
the IEEE Computer Society and ACM, 2001.
http://www.sigcse.org/cc2001/ (accessed 25 August
2006).

[8] M. Kölling. The problem of teaching object-oriented
programming, part 1: Languages. Journal of
Object-Oriented Programming, January 1999.

[9] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen.
Early programming: A study of the difficulties of
novice programmers. In ITiCSE-05, 2005.

[10] P. A. Luker. There’s more to OOP than syntax.
SIGCSE Bull., 26(1):56–60, 1994.

[11] F. Marton and S. Booth. Learning and Awareness.
Lawrence Erlbaum Ass., Mahwah, NJ, 1997.

[12] R. McCartney and K. Sanders. What are the
“threshold concepts” in computer science? In
T. Salakoski and T. Mäntylä, editors, Proceedings of
the Koli Calling 2005 Conference on Computer
Science Education, page 185, November, 2005.

[13] J. H. Meyer and R. Land. Threshold concepts and
troublesome knowledge (2): Epistemological
considerations and a conceptual framework for
teaching and learning. Higher Education, 49:373–388,
2005.

[14] J. H. F. Meyer and M. Shanahan. The troublesome
nature of a threshold concept in economics. 2003.
Paper presented at EARLI conference, Padova. (As
reported in [13]).

[15] D. Perkins. The many faces of constructivism.
Educational Leadership, 57(3):6–11, 1999.

[16] E. Roberts. The dream of a common language: The
search for simplicity and stability in computer science
education. SIGCSE Bull., 36(1):115–119, 2004.

[17] G. M. Schneider and J. L. Gersting. An Invitation to
Computer Science. Brooks Cole, second edition, 1998.

[18] A. Schwill. Fundamental ideas of computer science.
Bull. European Assoc. for Theoretical Computer
Science, 53:274–295, 1994.

[19] L. Thomas, M. Ratcliffe, and B. Thomasson.
Scaffolding with object diagrams in first year
programming classes: Some unexpected results. In
SIGCSE-04, 2004.

508


