
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

Creating	a	new	process	using	fork()
fork()	is	very	unusual	because	it	returns	different	values	in	the	(existing)	parent	process,	and	the	(new)	child	process:

the	value	returned	by	fork()	in	the	parent	process	will	be	the	process-indentifier,	of	process-ID,	of	the	child	process;
the	value	returned	by	fork()	in	the	child	process	will	be	0,	indicating	that	it	is	the	child,	because	0	is	not	a	valid
process-ID.

Each	successful	invocation	of	fork()	returns	a	new	monotonically	increasing	process-ID	(the	kernel	'wraps'	the	value	back	to
the	first	unused	positive	value	when	it	reaches	100,000).

#include		<stdio.h>
#include		<unistd.h>

void	function(void)
{
				int		pid;																	//	some	systems	define	a	pid_t

				switch	(pid	=	fork())	{
				case	-1	:
								printf("fork()	failed\n");					//	process	creation	failed
								exit(EXIT_FAILURE);
								break;

				case	0:																			//	new	child	process
								printf("c:		value	of	pid=%i\n",	pid);
								printf("c:		child's	pid=%i\n",	getpid());
								printf("c:		child's	parent	pid=%i\n",	getppid());
								break;

				default:																		//	original	parent	process
								sleep(1);
								printf("p:		value	of	pid=%i\n",	pid);
								printf("p:		parent's	pid=%i\n",	getpid());
								printf("p:		parent's	parent	pid=%i\n",	getppid());
								break;
				}
				fflush(stdout);
}

produces:

c:		child's	value	of	pid=0
c:		child's	pid=5642
c:		child's	parent	pid=5641
p:		parent's	value	of	pid=5642
p:		parent's	pid=5641
p:		parent's	parent	pid=3244

Of	note,	calling	sleep(1)	may	help	to	separate	the	outputs,	and	we	fflush()	in	each	process	to	force	its	output	to	appear.

	

CITS2002	Systems	Programming,	Lecture	9,	p1,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

Where	does	the	first	process	come	from?
The	last	internal	action	of	booting	a	Unix-based	operating	system	results	in	the	first	single	'true'	process,	named	init.

init	has	the	process-ID	of	1.	It	is	the	ancestor	process	of	all	subsequent	processes.

In	addition,	because	the	operating	system	strives	to	maintain	a	hierarchical	relationship	amongst	all	processes,	a	process	whose	parent	terminates	is
'adopted'	by	the	init	process.

	

	

	

CITS2002	Systems	Programming,	Lecture	9,	p2,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

The	general	calling	sequence	of	system	calls
If	a	single	program	has	two	distinct	execution	paths/sequences,	then	the	parent	and	child	may	run	different	parts	of	the
same	program.	Typically	the	parent	will	want	to	know	when	the	child	terminates.

The	typical	sequence	of	events	is:

the	parent	process	fork()s	a	new	child
process.

the	parent	waits	for	the	child's
termination,	calling	the	blocking	function
wait(&status).

[optionally]	the	child	process	replaces
details	of	its	program	(code)	and	data
(variables)	by	calling	the	execve()
function.

the	child	calls	exit(value),	with	an	integer
value	to	represent	its	success	or	failure.
By	convention,	zero	(=	EXIT_SUCCESS)
indicates	successful	execution,	non-zero
otherwise.

the	child's	value	given	to	exit()	is	written
by	the	operating	system	to	the	parent's
status.

	

CITS2002	Systems	Programming,	Lecture	9,	p3,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Waiting	for	a	Process	to	Terminate
The	parent	process	typically	lets	the	child	process	execute,	but	wants	to	know	when	the	child	has	terminated,	and	whether
the	child	terminated	successfully	or	otherwise.

A	parent	process	calls	the	wait()	system	call	to	suspend	its	own	execution,	and	to	wait	for	any	of	its	child	processes	to
terminate.

The	(new?)	syntax	&status	permits	the	wait()	system	call	(in	the	operating	system	kernel)	to	modify	the	calling	function's
variable.	In	this	way,	the	parent	process	is	able	to	receive	information	about	how	the	child	process	terminated.

#include		<stdio.h>
#include		<stdlib.h>
#include		<unistd.h>
#include		<sys/wait.h>

void	function(void)
{
				switch	(fork())	{
				case	-1	:
								printf("fork()	failed\n");	//	process	creation	failed
								exit(EXIT_FAILURE);
								break;

				case	0:																							//	new	child	process
								printf("child	is	pid=%i\n",	getpid());

								for(int	t=0	;	t<3	;	++t)	{
												printf("		tick\n");
												sleep(1);
								}
								exit(EXIT_SUCCESS);
								break;

				default:	{																				//	original	parent	process
								int	child,	status;

								printf("parent	waiting\n");
								child	=	wait(&status);

								printf("process	pid=%i	terminated	with	exit	status=%i\n",
																child,	WEXITSTATUS(status));
								exit(EXIT_SUCCESS);
								break;
				}

				}
}

	

CITS2002	Systems	Programming,	Lecture	9,	p4,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Memory	in	Parent	and	Child	Processes
The	(existing)	parent	process	and	the	(new)	child	process	continue	their	own	execution.

Importantly,	both	the	parent	and	child	have	their	own	copy	of
their	program's	memory	(variables,	stack,	heap).

The	parent	naturally	uses	the	memory	that	it	had	before	it
called	fork();	the	child	receives	its	own	copy	of	the	same
memory.	The	copy	is	made	at	the	time	of	the	fork().

As	execution	proceeds,	each	process	may	update	its	own
memory	without	affecting	the	other	process.

	

	

[OK,	I	lied	-	on	contemporary	operating	systems,	the	child
process	does	not	receive	a	full	copy	of	its	parent's	memory	at
the	time	of	the	fork():

the	child	can	share	any	read-only	memory	with	its
parent,	as	neither	process	can	modify	it.
the	child's	memory	is	only	copied	from	the	parent's
memory	if	either	the	parent	modies	its	(original)	copy,
or	if	the	child	attempts	to	write	to	its	copy	(that	it
hasn't	yet	received!)
this	sequence	is	termed	copy-on-write.

]

	

CITS2002	Systems	Programming,	Lecture	9,	p5,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

Running	a	New	Program
Of	course,	we	do	not	expect	a	single	program	to	meet	all	our	computing	requirements,	or	for	both	parent	and	child	to
conveniently	execute	different	paths	through	the	same	code,	and	so	we	need	the	ability	to	commence	the	execution	of	new
programs	after	a	fork().

Under	Unix/Linux,	a	new	program	may	replace	the	currently	running	program.	The	new	program	runs	as	the	same	process
(it	has	the	same	pid,	confusing!),	by	overwriting	the	current	process's	memory	(instructions	and	data)	with	the	instructions
and	data	of	the	new	program.

The	single	system	call	execv()	requests	the	execution	of	a	new	program	as	the	current	process:

#include	<stdio.h>
#include	<stdlib.h>
#include	<unistd.h>

char	*program_arguments[]	=	{
				"ls",
				"-l",
				"-F",
				NULL
};

			
				execv("/bin/ls",	program_arguments);
				//	A	SUCCESSFUL	CALL	TO	exec()	DOES	NOT	RETURN

				exit(EXIT_FAILURE);		//	IF	WE	GET	HERE,	THEN	exec()	HAS	FAILED

On	success,	execv()	does	not	return	(to	where	would	it	return?)	
On	error,	-1	is	returned,	and	errno	is	set	appropriately	(EACCES,	ENOENT,	ENOEXEC,	ENOMEM,).

The	single	system	call	is	supported	by	a	number	of	library	functions	(see	man	execl)	which	simplify	the	calling	sequence.

Typically,	the	call	to	execv()	(via	one	of	its	library	interfaces)	will	be	made	in	a	child	process,	while	the	parent	process
continues	its	execution,	and	eventually	waits	for	the	child	to	terminate.

	

CITS2002	Systems	Programming,	Lecture	9,	p6,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

Why	the	exit	status	of	a	program	is	important
To	date,	we've	always	used	exit(EXIT_FAILURE)	when	a	problem	has	been	detected,	or	exit(EXIT_SUCCESS)	when	all	has
gone	well.	Why?

The	operating	system	is	able	to	use	the	exit	status	of	a	program	to	determine	if	it	was	successful.

Consider	the	following	program	which	exits	with	the	integer	status	provided	as	a	command-line	argument:

#include		<stdio.h>
#include		<stdlib.h>

int	main(int	argc,	char	*argv[])
{
				int	status	=	EXIT_SUCCESS;			//	DEFAULT	STATUS	IS	SUCCESS	(=0)		

				if(argc	>	1)	{
								status	=	atoi(argv[1]);
				}
				printf("exiting(%i)\n",	status);

				exit(status);
}

	

CITS2002	Systems	Programming,	Lecture	9,	p7,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 	CITS2002 	CITS2002	schedule 	

Why	the	exit	status	of	a	program	is	important,	continued
Most	operating	system	shells	are,	themselves,	programming	languages,	and	they	may	use	a	program's	exit	status	to	direct
control-flow	within	the	shells	-	thus,	the	programming	language	that	is	the	shell,	is	treating	your	programs	as	if	they	are
external	functions.

Shells	are	typically	programmed	using	files	of	commands	named	shellscripts	or	command	files	and	these	will	often	have
conditional	constructs,	such	as	if	and	while,	just	like	C.	It's	thus	important	for	our	programs	to	work	with	the	shells	that
invoke	them.

We	now	compile	our	program,	and	invoke	it	with	combinations	of	zero,	and	non-zero	arguments:

prompt>		mycc	-o	status	status.c			

prompt>		./status	0	&&	./status	1
exiting(0)
exiting(1)

prompt>		./status	1	&&	./status	0
exiting(1)

prompt>		./status	0	||	./status	1
exiting(0)

prompt>		./status	1	||	./status	0
exiting(1)
exiting(0)

Example1	-	consider	the	sequence						prompt>		cd	mydirectory		&&		rm	-f	*

Example2	-	consider	the	actions	in	a	Makefile	(discussed	in	a	later	lecture).	
If	a	target	has	more	than	one	action,	then	the	make	program	executes	each	until	one	of	them	fails	(or	until	all
succeed).

	

CITS2002	Systems	Programming,	Lecture	9,	p8,	19th	August	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Creating a new process using fork()
	Where does the first process come from?
	The general calling sequence of system calls
	Waiting for a Process to Terminate
	Memory in Parent and Child Processes
	Running a New Program
	Why the exit status of a program is important
	Why the exit status of a program is important, continued

