am.ga] THE UNIVERSITY OF

.«; X\{E%EEEE CITS2002 Systems Programming

1 next — ®CITS2002 & CITS2002 schedule

Creating a new process using fork()

fork() is very unusual because it returnsdifferent values in the (existing) parent process, and the (new) child process:

@ the value returned by fork() in the parent process will be the process-indentifier, of process-ID, of the child process;

@ the value returned by fork() in the child process will be 0, indicating that it is the child, because 0 is not a valid
process-ID.

Each successful invocation of fork() returns a new monotonically increasing process-ID (the kernel 'wraps' the value back to
the first unused positive value when it reaches 100,000).

#include <stdio.h>
#include <unistd.h>

void function (void)
{

int pid; // some systems define a pid t

switch (pid = fork()) {

case -1
printf ("fork () failed\n"); // process creation failed
exit (EXIT FAILURE) ;
break;

case 0: // new child process
printf ("c value of pid=%i\n", pid);
printf("c: child's pid=%i\n", getpid());
printf ("c child's parent pid=%i\n", getppid()):;
break;

default: // original parent process
sleep(l);
printf ("p value of pid=%i\n", pid);
printf ("p: parent's pid=%i\n", getpid()):;
printf ("p parent's parent pid=%i\n", getppid()):;
break;

}
fflush (stdout) ;

produces:
c: child's value of pid=0
c: child's pid=5642
c: child's parent pid=5641
p: parent's value of pid=5642
p: parent's pid=5641
p: parent's parent pid=3244

Of note, calling sleep(1) may help to separate the outputs, and wefflush() in each process to force its output to appear.

CITS2002 Systems Programming, Lecture 9, p1, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

& AUSTRALIA

«— prev 2 next — ©CITS2002 © CITS2002 schedule

Where does the first process come from?

The last internal action of booting a Unix-based operating system results in the first single 'true' process, namedinit.
init has the process-ID of 1. It is the ancestor process ofall subsequent processes.

In addition, because the operating system strives to maintain a hierarchical relationship amongst all processes, a process whose parent terminates is
‘adopted' by the init process.

P10 1

S

fark fork fork Stack

FID 2 / l FID 3 FID 10
I I [o] D

T T
exec exec axec

PID2 ‘ ‘ PID 3 + PID 10
Data
] i] ‘ 99:1\‘] Code: /usr/bin/bash

Running 'Is’ on a linux shell

Heap

enac

¥ PiD3 "._
v

exit sHae Stack

+ Fs Stack

fhinfsh exe c”
fark fork
fark fork _h
FiD 20 FID 21 W, PID22 PID 23
L fin/sh]] finish 1 l foinish] [finish l ean
exec exec EXeC EXeC Data S [)ata
PID20Y PD21 Y ¥ P22 ¥ P23 Code: /usr/bin/bash Code: /usr/bin/ls
J Is] l miore file.c] J ce file.c] ‘ Ja.aut] Parent Chlld
exit
i ¥ v

CITS2002 Systems Programming, Lecture 9, p2, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

. WESTERN

ASJ AUSTRALIA

CITS2002 Systems Programming

«— prev 3 next —» @ CITS2002 & CITS2002 schedule

The general calling sequence of system calls

If a single program has two distinct execution paths/sequences, then the parent and child may run different parts of the
same program. Typically the parent will want to know when the child terminates.

fork proc
> B

wait
swich EXec
the execution of
a program
exit

if a higher priority
process exists, swich
selects it, not parent

process(procA)

(perhaps...)

swich \

The typical sequence of events is:

@ the parent process fork()s a new child
process.

@ the parent waits for the child's
termination, calling the blocking function
wait(&status).

© [optionally] the child process replaces
details of its program (code) and data
(variables) by calling the execve()
function.

© the child calls exit(value), with an integer
value to represent its success or failure.
By convention, zero (= EXIT_SUCCESS)
indicates successful execution, non-zero
otherwise.

@ the child's value given to exit() is written
by the operating system to the parent's
status.

CITS2002 Systems Programming, Lecture 9, p3, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

a8 ga] THE UNIVERSITY OF

.«; X\{E%EEEE CITS2002 Systems Programming

«— prev 4 next —» @ CITS2002 & CITS2002 schedule

Waiting for a Process to Terminate

The parent process typically lets the child process execute, but wants to know when the child has terminated, and whether
the child terminated successfully or otherwise.

A parent process calls the wait() system call to suspend its own execution, and to wait forany of its child processes to
terminate.

The (new?) syntax &status permits the wait() system call (in the operating system kernel) to modify the calling function's
variable. In this way, the parent process is able to receive information about how the child process terminated.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

void function (void)
{
switch (fork()) {
case -1
printf ("fork() failed\n"); // process creation failed
exit(EXITiFAILURE);
break;

case 0: // new child process
printf ("child is pid=%i\n", getpid());

for (int t=0 ; t<3 ; ++t) {
printf (" tick\n");
sleep(l);

}

exit (EXIT_SUCCESS) ;

break;

default: ({ // original parent process
int child, status;

printf ("parent waiting\n");
child = wait(&status);

printf ("process pid=%i terminated with exit status=%i\n",
child, WEXITSTATUS (status));

exit (EXIT_ SUCCESS) ;

break;

CITS2002 Systems Programming, Lecture 9, p4, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

) WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 5 next —» @ CITS2002 & CITS2002 schedule

Memory in Parent and Child Processes

The (existing) parent process and the (new) child process continue their own execution.

mem ory memory Importantly, both the parent and child have their own copy of
their program's memory (variables, stack, heap).

The parent naturally uses the memory that it had before it
Copy called fork(); the child receives its own copy of the same

process the parent memory. The copy is made at the time of the fork().
As execution proceeds, each process may update its own
memory without affecting the other process.
the child

[OK, I lied - on contemporary operating systems, the child
process does not receive a full copy of its parent's memory at
the time of the fork():

@ the child can share any read-only memory with its
parent, as neither process can modify it.

@ the child's memory is only copied from the parent's
memory if either the parent modies its (original) copy,
or if the child attempts to write to its copy (that it
hasn't yet received!)

o this sequence is termed copy-on-write.

CITS2002 Systems Programming, Lecture 9, p5, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

@m@m| THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 6 next —» @ CITS2002 & CITS2002 schedule

Running a New Program

Of course, we do not expect a single program to meet all our computing requirements, or for both parent and child to
conveniently execute different paths through the same code, and so we need the ability to commence the execution of new
programs after a fork().

Under Unix/Linux, a new program may replace the currently running program. The new program runs as the same process
(it has the same pid, confusing!), by overwriting the current process's memory (instructions and data) with the instructions
and data of the new program.

The single system call execv() requests the execution of a new program as the current process:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

char *program arguments[] = {
lllsll,
"—l",
"—F",
NULL

execv("/bin/ls", program arguments);
// A SUCCESSFUL CALL TO exec() DOES NOT RETURN

exit (EXIT FAILURE); // IF WE GET HERE, THEN exec() HAS FAILED

On success, execv() does not return (to where would it return?)
On error, -1 is returned, and errno is set appropriately (EACCES, ENOENT, ENOEXEC, ENOMEM,).

The single system call is supported by a number of library functions (see man execl) which simplify the calling sequence.

Typically, the call to execv() (via one of its library interfaces) will be made in a child process, while the parent process
continues its execution, and eventually waits for the child to terminate.

CITS2002 Systems Programming, Lecture 9, p6, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

@ AUSTRALIA

«— prev 7 next —» @ CITS2002 & CITS2002 schedule

Why the exit status of a program is important

To date, we've always used exit (Ex1T_FATLURE) When a problem has been detected, orexit (ex1T success) when all has
gone well. Why?

The operating system is able to use the exit status of a program to determine if it was successful.

Consider the following program which exits with the integer status provided as a command-line argument:

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])

{
int status = EXIT SUCCESS; // DEFAULT STATUS IS SUCCESS (=0)

if (argc > 1) {
status = atoi(argv[l]);
}

printf ("exiting (%$i) \n", status);

exit (status);

CITS2002 Systems Programming, Lecture 9, p7, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 8 © CITS2002 & CITS2002 schedule

Why the exit status of a program is important, continued

Most operating system shells are, themselves, programming languages, and they may use a program'sexit status to direct
control-flow within the shells - thus, the programming language that is the shell, is treating your programs as if they are
external functions.

Shells are typically programmed using files of commands named shellscripts or command files and these will often have
conditional constructs, such as if and while, just like C. It's thus important for our programs to work with the shells that
invoke them.

We now compile our program, and invoke it with combinations of zero, and non-zero arguments:

prompt> mycc -o status status.c

prompt> ./status 0 && ./status 1
exiting (0)
exiting (1)

prompt> ./status 1 && ./status 0
exiting (1)

prompt> ./status 0 || ./status 1
exiting (0)

prompt> ./status 1 || ./status 0
exiting (1)
exiting (0)

© Example1 - consider the sequence prompt> cd mydirectory && rm -f*

© Example2 - consider the actions in a Makefile (discussed in a later lecture).
If a target has more than one action, then themake program executes each until one of them fails (or until all
succeed).

CITS2002 Systems Programming, Lecture 9, p8, 19th August 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	Creating a new process using fork()
	Where does the first process come from?
	The general calling sequence of system calls
	Waiting for a Process to Terminate
	Memory in Parent and Child Processes
	Running a New Program
	Why the exit status of a program is important
	Why the exit status of a program is important, continued

