THE UNIVERSITY OF

M. X\LIJ%%EE]EIE CITS2002 Systems Programming

1 next — @ CITS2002 & CITS2002 schedule

The structure of C programs

Let's look at the high-level structure of a short C program, rotate.c (we're using ellipsis to omit some statements, for now).
At this stage it's not important what the program is supposed to do.

Of note in this example:

#include <stdio.h>

#include <stdlib.h> e Characters such as a space, tab, or newline, may

#include <string.h> appear almost anywhere - they are stripped out and
#include <ctype.h> ignored by the C compiler.
/* Compile this program with: We use such whitespace characters to provide a layout
cc -std=cll -Wall -Werror -o rotate rotate.c to our programs. While the exact layout is not important,
*/ using a consistent layout is very good practice.
fesiins BOT LS e Keywords, in bold, mean very specific things to the C
compiler.

static char rotate(char c)

e Lines commencing with a '#' in blue are processed by a
separate program, named the C preprocessor.

return c;

} In practice, our program is provided as input to the
preprocessor, and the preprocessor's output is given to
int main (int argcount, char *argvalue[]) the C compiler.
{
// check the number of arguments e Lines in green are comments. They are ignored by the
if (argcount != 2) { C compiler, and may contain (almost) any characters.

: CFOLE (R N0 5 C11 provides two types of comments -
S 1. /* block comments */ and

ex1t (EXIT SUCCESS) ; 2. // comments to the end of a line
}

return 0;

CITS2002 Systems Programming, Lecture 2, p1, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

@m@m| THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 2 next — ®CITS2002 @ CITS2002 schedule

The structure of C programs, continued

Same program, but more to note:

include <stdio.h> . o
Egzliii <2Eiiib . e A variety of brackets are employed, in pairs, to group
$include <string.h> together items to be considered in the same way. Here:

#include <ctype.h> . . .
o angle brackets enclose a filename in a #include

/* Compile this program with: directive,
*/cc -std=cll -Wall -Werror -o rotate rotate.c o round brackets group !tems in arithmetic
expressions and function calls,
#define ROT 13 o square brackets enclose the index when access

arrays (vectors and matrices...) of data, and

o curly brackets group together sequences of one or
more statements in C. We term a group of
statements a block of statements.

static char rotate (char c)

} return c; e Functions in C, may be thought of as a block of
statements to which we give a name. In our example,
int main(int argcount, char *argvalue[]) we have two functions - rotate() and main().
{
// check the number of arguments e When our programs are run by the operating system,
if (argcount != 2) { the operating system always starts our program from

main(). Thus, every complete C program requires a

exit (EXIT FAILURE) ; main() function.

}

1 : . .

29 The operating system passes some special information
exit (EXIT SUCCESS) ; to our main() function, command-line arguments, and

} main() needs a special syntax to receive these.

return 0;

} e Most C programs you read will name main()'s
parameters as argc and argv.

¢ When our program finishes its execution, it returns
some information to the operating system. Our example
here exits by announcing either its failure or success.

CITS2002 Systems Programming, Lecture 2, p2, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

& AUSTRALIA

«—prev 3 next — ©CITS2002 @ CITS2002 schedule

Compiling and linking our C programs
C programs are human-readable text files, that we term source-code files.

This makes them very easy to copy, read, and edit on different computers and different operating systems.
C is often described as being portable at the source-code level.

Before we can run (execute) our C programs, we must translate, or compile, their source-code files to files that the operating
system can better manage.

A program known as a compiler translates (compiles) source-code files into object-code files.

Finally, we translate or link one or more object-code files to produce anexecutable program, often termed a 'binary', an
'executable’, or an 'exe' file.

A program known as a linker performs this translation, also linking our object-code file(s) withstandard libraries and (optionally)
3rd-party libraries.

S
Code. Object Executable THE #1 PROGRAMMER EXCUSE
File File File FOR LEGITIMATELY SLACKING OFF:
e orommon MY CODE'S COMPILING.”
s rat an1100 HEY! GET BACK

10111101
11100001
Library 0000001l

Files 01000100
10011101
11111100

Depending on how we invoke the compiler, sometimes we can 'move’ straight from the source-code files to the executable
program, all in one step.

In reality the compiler is 'silently' executing the linker program for us, and then removing any unwanted object-files.

CITS2002 Systems Programming, Lecture 2, p3, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

a8 ga] THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

%uz? AUSTRALIA

«— prev 4 next — ®CITS2002 @ CITS2002 schedule

Variables

Variables are locations in a computer's memory. A typical desktop or laptop computer will have 8-32GB of memory, or eight
to thirty-two billion addressable memory locations,

A typical C program will use 4 bytes to hold a single integer value, or 8 bytes to hold a single floating-point value.
Any variable can only hold a single value at any time - they do not maintain a history of past values they once had.

Naming our variables

To make programs more readable, we provide variables with simple names. We should carefully choose names to reflect
the role of the variable in our programs.

¢ While variable names can be almost anything (but not the same as the keywords in C) there's a simple restriction on
the permitted characters in a name -

o they must commence with an alphabetic or the underscore character (_ A-Z a-z), and
o be followed by zero or more alphabetic, underscore or digit characters (_ A-Z a-z 0-9).

e C variable names are case sensitive, thus:
MYLIMIT, mylimit, Mylimit and MyLimit
are four different variable names.
e While not required, it's preferred that variable names do not consist entirely of uppercase characters.

We'll consistently use uppercase-only names for constants provided by the C preprocessor, or user-defined type
names:

MAXLENGTH, AVATAR, BUFSIZ, and ROT
o Older C compilers limited variable names to, say, 8 unique characters. Thus, for them,
turn nuclear reactor coolant on and turn nuclear reactor coolant off

are the same variable! Keep this in mind if ever developing portable code for old environments.

CITS2002 Systems Programming, Lecture 2, p4, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

a8 ga] THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

%uz? AUSTRALIA

«— prev 5 next — ®CITS2002 @ CITS2002 schedule

Basic datatypes

Variables are declared to be of a certain datatype, or just type.

We use different types to represent the permissible values that a program's variable has.

For example, if we're using a variable to just count things, we'll use an integer variable to hold the count; if performing
trigonometry on angles expressed in radians, we'll use floating-point variables to hold values with both an integral and a
fractional part.

C provides a number of standard, or base types to hold commonly required values, and later we'll see how we can also
define our own user-defined types to meet our needs.

Let's look quickly at some of C's base datatypes:

typename | description, and an example of variable initialization

Boolean (truth values), which may only hold the values of either true or false

bool e.g. bool finished =false;

character values, to each hold a single values such as an alphabetic character, a digit character, a
char space, a tab...
e.g. char initial ='C’;

integer values, negative, positive, and zero

int e.g. int year = 2006;
floating point values, with a typical precision of 10 decimal digits (on our lab machines)
float : e
e.g. float inflation = 5.1;
double "bigger" floating point values, with a typical precision of 17 decimal digits (on our lab machines)

e.g. double pi = 3.1415926535897932;

Some textbooks will (too quickly) focus on the actual storage size of these basic types, and emphasise the ranges of
permissible values. When writing truly portable programs - that can execute consistently across different hardware
architectures and operating systems - it's important to be aware of, and avoid, their differences. We'll examine this issue
later, but for now we'll focus on using these basic types in their most obvious ways.

From where does the bool datatype get its name? - the 19th century mathematician and philosopherGeorge Boole.

CITS2002 Systems Programming, Lecture 2, p5, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://en.wikipedia.org/wiki/George_Boole

mmm THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 6 next — ®CITS2002 @ CITS2002 schedule

The Significance of Integers in C

Throughout the 1950s, 60s, and 70s, there were many more computer hardware manufacturers than there are today. Each
company needed to promote its own products by distinguishing them from their competitors.

At a low level, different manufacturers employed different memory sizes for a basic character - some just 6 bits, some 8
bits, 9, and 10. The unfortunate outcome was the incompatability of computer programs and data storage formats.

The C programming language, developed in the early 1970s, addressed this issue by not defining the required size of its
datatypes. Thus, C programs are portable at the level of their source code - porting a program to a different computer
architecture is possible, provided that the programs are compiled on (or for) each architecture. The only requirement was
that:

sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long)

Since the 1980s, fortunately, the industry has agreed on 8-bit characters or bytes. But (compiling and) running the C
program on different architectures:

) , may produce different (though still correct) results:
#include <stdio.h>

int main (void)

; char 1
printf ("char %lu\n", sizeof (char)); §hort i
printf ("short %$lu\n", sizeof (short)); int
printf ("int %$lu\n", sizeof (int)); long 8
printf ("long %lu\n", sizeof(long)) ; , L.
return 0 ' It's permissible for different C compilers on different architectures

} to employ different sized integers.

Why does this matter? Different sized integers can store different maximum values - the above datatypes are signed
(supporting positive and negative values) so a 4-byte integer can only represent the values -
2,147,483,648 to 2,147,483,647.

If employing integers for 'simple' counting, or looping over a known range of values, there's rarely a problem. But if using
integers to count many (small) values, such as milli- or micro-seconds, it matters:

e Fun fact: GPS uses 10 bits to store the week. That means it runs out... oh heck ? April 6. 2019
e Airlines Have To Reboot Their Airbus A350 Planes After Every 149 Hours

e To keep a Boeing Dreamliner flying, reboot once every 248 days

CITS2002 Systems Programming, Lecture 2, p6, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.theregister.co.uk/2019/02/12/current_gps_epoch_ends/
https://www.ubergizmo.com/2019/07/airlines-have-to-reboot-their-airbus-a350-planes-after-every-149-hours/
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/

@m@m| THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 7 next — ®CITS2002 @ CITS2002 schedule

The scope of variables

The scope of a variable describes the range of lines in which the variable may be used. Some textbooks may also term this
the visibility or lexical range of a variable.

C has only 2 primary types of scope:

o global scope (sometimes termed file scope) in which variables are declared outside of all functions and statement
blocks, and

e block scope in which variables are declared within a function or statement block.

e The variable count has global scope.
1 #incl <stdio.h> . ' .

01 #include <stdio It is defined on line 06, and may be used anywhere from
02 #include <stdlib.h> . . f fi
R T R —— line 06 until the end of the file (line 26).
04 #include <ctype.h> . .
05 The variable count is also preceded by the keyword
06 static int count = 0; static, which prevents it from being 'seen’ (read or written)
07 from outside of this file rotate.c
08 int main (int argcount, char *argvalue[])
09 { e The variable nfound has block scope.
10 int nfound = 0;
Ll It is defined on line 10, and may be used anywhere from
2 /¢ COEE EHS MWISEE G SEemaomiEs line 10 until the end of the block in which it was defined
13 if (argcount != 2) { (untiI line 26)
14 int nerrors = 1;)
15 :
16 o e The variable nerrors has block scope.
17 exit (EXIT FAILURE) ; .) .
18 } It is defined on line 14, and may be used anywhere from
19 else { line 14 until line 18.
20 int ntimes = 100;
21 e The variable ntimes has block scope.
22 e
23 exit (EXIT_SUCCESS) ; It is defined on line 20, and may be used anywhere from
24 } line 20 until line 24.
25 return 0;
26)

e We could define a different variable named nerrors in the

block of lines 20-24 - without problems.

e We could define a different variable named nfound in the
block of lines 20-24 - but this would be a very bad
practice!

CITS2002 Systems Programming, Lecture 2, p7, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

ﬂ!:ﬂl‘ THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 8 next — ®CITS2002 @ CITS2002 schedule

Flow of control in a C program

A program's control flow describes how sequences of statements are executed.
Flow control in a C program is very similar to most other imperative and object-oriented languages.

C programs commence their execution at their main() function, execute their statements, and exit (return the flow of
control) to the operating system.

o |t's fairly obvious that statements need to be executed in a well-defined order, as we expect programs to always
behave the same way (unless some random data directs the execution path, as in computer games, simulations, and
heuristic algorithms).

o Default flow of control executes each statement in order, top-to-bottom.

e Programs that only execute from top-to-bottom are pretty boring, and we need to control their flow with a variety of
conditional statements, loops, and function-calls.

CITS2002 Systems Programming, Lecture 2, p8, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

m|| THE UNIVERSITY OF

. X\{JES?'EEE[X CITS2002 Systems Programming

«— prev 9 next -— @CITS2002 @ CITS2002 schedule

Conditional execution

Conditional statements first evaluate a Boolean condition and then, based on whether it's true or false, execute other statements.

The most common form is: Sometimes, the else clause is omitted: Often, the else clause provides further if
statements:
if (conditionl) { if (conditionl) { if (conditionl) {
// more statements; // more statements; // more statements;
} } }
else { else if (condition2) {
// more statements; // more statements;
} }
else {
// more statements;
}

Note that in the examples, above, each block of statementsto be executed has been written within curly-brackets.

The curly-brackets are not required (we could just write a single statement for eitherif or else clause). However, adding curly-
brackets is considered a good practice. They provide a safeguard for when additional statements are added later.

CITS2002 Systems Programming, Lecture 2, p9, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

w| THE UNIVERSITY OF

WESTERN

CITS2002 Systems Programming

%z’ AUSTRALIA

«— prev 10 next —

© CITS2002

© CITS2002 schedule

Boolean values

Of significance, and a very common cause of errors in C programs, is that C standards, prior to ISO-C99, had no Boolean datatype.

Historically, an integer value of zero evaluated equivalent to a Boolean value of false; any non-zero integer value evaluated astrue.

You may read some older C code:

which may be badly and accidently coded as:

so, employ defensive programming:

int initialised = 0; // set to false

if (! initialised) {
// initialisation statements;

initialised = 1; // set to true

int initialised = 0; // set to false

if (initialised = 0) {
// initialisation statements;
initialised = 1;

}

// set to true

int initialised = 0; // set to false

if (0 = initialised)
// initialisation statements;
initialised = 1;

}

// set to true

In the second example, the conditional test always evaluates to false, as the single equals character requests an assignment, not a comparison.

It is possible (and occassionally reasonable) to perform an assignment as part of a Boolean condition -

you'll often see:

while((nextch = getc(file)) 1= EOF) {....

Whenever requiring the true and false constants (introduced in C99), we need to provide the line:

#include <stdbool.h>

CITS2002 Systems Programming, Lecture 2, p10, 24th July 2024.

{ // invalid syntax!

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

|!M_m| THE UNIVERSITY OF

CITS2002 Systems Programming

0, WESTERN
*uz? AUSTRALIA

«— prev 11 next —» ©CITS2002 © CITS2002 schedule

Switch statements

When the same (integer) expression is compared against a number of distinct values, it's preferred to evaluate the expression once, and
compare it with possible values:
Less-common features of the switch statement:

Cascading if..else..if.. statements: The equivalent switch statement:

switch (expression) {

// more statements;

if (expression == valuel) {

switch (expression) {
case valuel
// more statements;

case valuel :
case value2 :

// handle either valuel or value2
else if (expression == value2) { | | break; | | ...,
// more statements;

case value2

} // more statements; case value3 :
else { L. // more statements;

// more statements; break; | ...

..... // no 'break' statement, drop through
} default :

default :
// more statements;

// more statements;

o Typically the 'expression' is simply an identifier, but it may be arbitrarily complex - such as an arithmetic expression, or a function
call.

e The datatype of the 'expression’ must be an integer (which includes characters, Booleans, and enumerated types), but it cannot be a
real or floating-point datatype.

e The break statement at the end of eachcase indicates that we have finished with the 'current' value, and control-flow leaves the
switch statement.
Without a break statement, control-flow continues "downwards", flowing into the next case branch (even though the expression
does not have that case's value!).

o switch statements with 'dense' values (none, or few integer missing) provide good opportunities for optimised code.

e There is no need to introduce a new block, with curly-brackets, unless you need to define new local variables for specific case
branches.

CITS2002 Systems Programming, Lecture 2, p11, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

| E{E%EE]E& CITS2002 Systems Programming

«— prev 12 next — ©CITS2002 @ CITS2002 schedule

Flow of control in a C program - bounded loops

One of the most powerful features of computers, in general, is to perform thousands, millions, of repetitive tasks quickly

(in fact, one of the motivating first uses of computers in the 1940s was to calculate trigonometric tables for the firing of artillery
shells).

C provides its for control statement to/oop through a sequence of statements, ablock of statements, a known number of times:

The most common form appears below, in which we introduce The loop control variable does not always have to be an
a loop control variable, i, to count how many times we go integer:
through the loop:

// here, variable i holds the values 1,2,...10 // here, variable ch holds each lowercase value

for(int 1 =1 ; i <= 10 ; i = i+1) { for(char ch = 'a' ; ch <= 'z' ; ch = ch+l) {
// the above introduced a loop-control variable, i | |
..... printf ("loop using character '%c'\n", ch);

printf ("loop number %i\n", i), | | L....

// variable i is available down to here

}

// but variable i is not available from here

Notice that in both cases, above, we have introduced new variables, here i and ch, to specifically control the loop.

The variables may be used inside each loop, in the statement block, but then "disappear" once the block is finished (after its bottom
curly bracket).

It's also possible to use any other variable as the loop control variable, even if defined outside of the for loop. In general, we'll try to
avoid this practice - unless the value of the variable isrequired outside of the loop.

CITS2002 Systems Programming, Lecture 2, p12, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

@m@m| THE UNIVERSITY OF

.«k X\{E%EEEE CITS2002 Systems Programming

«— prev 13 next — @ CITS2002 @& CITS2002 schedule

Flow of control in a C program - unbounded loops

The for loops that we've just seen should be used when we know, ahead of time, how many times we need to loop (i.e. 10
times, or over the range 'a'..'z").

Such loops are termed bounded loops and, unless we've made an unseen coding error, always terminate after a fixed
number of iterations.

There are also many occasions when we don't know, ahead of time, how many iterations may be required. Such occasions
require unbounded loops.

C provides two types of unbounded loop:

The most common is the while loop, where zero or Less common is the do....while loop, where at least one
more iterations are made through the loop: iteration is made through the loop:

#fdefine NLOOPS 20 #define NLOOPS 20

int i = 1; int i = 1;

int n = 0; int n = 0;

while (i <= NLOOPS) { do {
printf ("iteration number %i\n", 1i); printf ("iteration number %i\n", 1i);
i = some calculation setting i; i = some calculation setting i;
n=n+1; n=n+4+1;

} } while (i <= NLOOPS) ;

printf ("loop was traversed %$i times\n", n); printf ("loop was traversed %i times\n", n);

Notice that in both cases we still use a variable, i, to control the number of iterations of each loop, and that the changing
value of the variable is used to determine if the loop should "keep going".

However, the statements used to modify the control variable may appear almost anywhere in the loops. They provide
flexibility, but can also be confusing when loops become severals tens or hundreds of lines long.

Notice also that while, and do....while loops cannot introduce new variables to control their iterations, and so we have to
use existing variables from an outer lexical scope.

CITS2002 Systems Programming, Lecture 2, p13, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

‘:q ‘ THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

&% AUSTRALIA

«— prev 14 next — @ CITS2002 @& CITS2002 schedule

Writing loops within loops

There's a number of occassions when we wish to loop a number of times (and so we use a for loop) and within that loop we
wish to perform another loop. While a little confusing, this construct is often quite common. It is termed a nested loop.

#define NROWS 6
#define NCOLS 4
for (int row = 1 ; row <= NROWS ; row = row+l) { // the 'outer' loop
for (int col = 1 ; col <= NCOLS ; col = col+l) { // the 'inner' loop
printf (" (%1, %1) ", row, col); // print row and col as if "coordinates"
}
printf ("\n"); // finish printing on this line
}

The resulting output will be:

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)
(5,1) (5,2) (5,3) (5,4)
(6,1) (6,2) (6,3) (6,4)

Notice that we have two distinct loop-control variables, row and co1.
Each time that the inner loop (co1's loop) starts, co1's value is initialized to 1, and advances to 4 (NCOLS).

As programs become more complex, we will see the need for, and write, all combinations of:

for loops within for loops,
while loops within while loops,
for loops within while loops,

e and soon....

CITS2002 Systems Programming, Lecture 2, p14, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

%z AUSTRALIA

«— prev 15 next — @CITS2002 @& CITS2002 schedule

Changing the regular flow of control within loops

There are many occasions when the default flow of control in loops needs to be modified.

Sometimes we need to leave a loop early, using the break Sometimes we need to start the next iteration of a loop, even
statement, possibly skipping some iterations and some before executing all statements in the loop:
statements:
for(int 1 =1 ; i <= 10 ; i = i+1) { for(char ch = 'a' ; ch <= '"z' ; ch = ch+l) {
// Read an input character from the keyboard if(ch == 'm') { // skip over the character 'm'
..... continue;
if (input char == 'Q') { // Should we quit? }
break; L
s ' ...
..... statements that will never see ch == 'm'
5 I Y
// Come here after the 'break'. 1 is unavailable }

In the first example, we iterate through the loop at most 10 times, each time reading a line of input from the keyboard. If the user
indicates they wish to quit, we break out of the bounded loop.

In the second example, we wish to perform some work for all lowercase characters, except 'm'.
We use continue to ignore the following statements, and to start the next loop (with ch =="n").

CITS2002 Systems Programming, Lecture 2, p15, 24th July 2024

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

s AUSTRALIA

«— prev 16 next — ©CITS2002 © CITS2002 schedule

The equivalence of bounded and unbounded loops

We should now be able to see that the for, while, and do ... while control flow statements are each closely related.

To fully understand this, however, we need to accept (for now), that the three "pieces" of the for construct, are not always nitialization,
condition, modification.

More generally, the three pieces may be C expressions - for the moment we'll consider these as Cstatements which, if they produce a
value, the value is often ignored.

The following loops are actually equivalent:

for (expressionl ; expression2 ; expression3) { expressionl;
statementl; while (expression2) {
statementl;

expression3;

In both cases, we're expecting expression?2 to produce a Boolean value, eithertrue or false, as we need that truth value to determine if
our loops should "keep going".

You should think about these carefully, perhaps perform some experiments, to determine where control flow really goes when we
introduce break and continue statements.

CITS2002 Systems Programming, Lecture 2, p16, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

ﬂ!:ﬂl‘ THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 17 next — @ CITS2002 @& CITS2002 schedule

Some unusual loops you will encounter

As you read more C programs written by others, you'll see some statements that /ook like for or while loops, but appear to
have something missing.

In fact, any (or all!) of the 3 "parts" of a for loop may be omitted.

For example, the following loop initially sets i to 1, and increments it each iteration, but it doesn't have a "middle"
conditional test to see if the loop has finished. The missing condition constantly evaluates to true:

for(int i = 1 ; /* condition is missing */ ; i = i+1) {

Some loops don't even have a loop-control variable, and don't test for their termination. This loop will run forever, until we
interrupt or terminate the operating system process running the C program.
We term these infinite loops :

#include <stdbool.h>

// cryptic - avoid this mechanism // clearer - use this mechanism
for(; ;) { while(true) {

While we often see and write such loops, we don't usually want them to run forever!

We will typically use an enclosed condition and a break statement to terminate the loop, either based on some user input,
or the state of some calculation.

CITS2002 Systems Programming, Lecture 2, p17, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

THE UNIVERSITY OF

WESTERN CITS2002 Systems Programming

ASJ AUSTRALIA

«— prev 18 © CITS2002 @ CITS2002 schedule

Lecture 2 Summary

C11 is a small programming language (in terms of its number of keywords), although some aspects can be difficult to
learn when compared to newer languages.

C is a compiled programming language. The human-readable source code of a C program needs translating to
executable machine code before the program can be executed.

Unlike Python programs, white-space is insignificant and is not used to define lexical scoping. New lexical blocks are
introduced with curly brackets.

Alphabetic case is significant. Any colour seen in textbooks or possibly (visually) added by your text editor, is
insignificant.

C provides a number of integer data types, of differing system-dependent widths, and two floating-point data types.
Data types of exact widths may be explictly specified for architecture-specific programming.

Floating-point data types are only very rarely used in systems programming.
C's control-flow statements - conditional statements, bounded and unbounded loops, and nested instances of these,

and unconditional control-flow - execute similarly to equivalent statements in other languages, although their syntax
may appear unusual.

CITS2002 Systems Programming, Lecture 2, p18, 24th July 2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	The structure of C programs
	The structure of C programs, continued
	Compiling and linking our C programs
	Variables
	Naming our variables
	Basic datatypes
	The Significance of Integers in C
	The scope of variables
	Flow of control in a C program
	Conditional execution
	Boolean values
	Switch statements
	Flow of control in a C program - bounded loops
	Flow of control in a C program - unbounded loops
	Writing loops within loops
	Changing the regular flow of control within loops
	The equivalence of bounded and unbounded loops
	Some unusual loops you will encounter
	Lecture 2 Summary

