
CITS2002	Systems	Programming		

1 next	→ 	CITS2002 	CITS2002	schedule 	

The	structure	of	C	programs
Let's	look	at	the	high-level	structure	of	a	short	C	program,	rotate.c	(we're	using	ellipsis	to	omit	some	statements,	for	now).	
At	this	stage	it's	not	important	what	the	program	is	supposed	to	do.

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>
#include	<ctype.h>

/*	Compile	this	program	with:
			cc	-std=c11	-Wall	-Werror	-o	rotate	rotate.c
	*/

#define	ROT	13

static	char	rotate(char	c)
{
				c	=	c	+	ROT;
			
				return	c;
}

int	main(int	argcount,	char	*argvalue[])
{
				//	check	the	number	of	arguments
				if(argcount	!=	2)	{
							
								exit(EXIT_FAILURE);
				}
				else	{
							
								exit(EXIT_SUCCESS);
				}
				return	0;
}

Of	note	in	this	example:

Characters	such	as	a	space,	tab,	or	newline,	may
appear	almost	anywhere	-	they	are	stripped	out	and
ignored	by	the	C	compiler.

We	use	such	whitespace	characters	to	provide	a	layout
to	our	programs.	While	the	exact	layout	is	not	important,
using	a	consistent	layout	is	very	good	practice.

Keywords,	in	bold,	mean	very	specific	things	to	the	C
compiler.

Lines	commencing	with	a	'#'	in	blue	are	processed	by	a
separate	program,	named	the	C	preprocessor.

In	practice,	our	program	is	provided	as	input	to	the
preprocessor,	and	the	preprocessor's	output	is	given	to
the	C	compiler.

Lines	in	green	are	comments.	They	are	ignored	by	the
C	compiler,	and	may	contain	(almost)	any	characters.

C11	provides	two	types	of	comments	-

1.	 /*	block	comments	*/		and
2.	 //	comments	to	the	end	of	a	line

	

CITS2002	Systems	Programming,	Lecture	2,	p1,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 2 next	→ 	CITS2002 	CITS2002	schedule 	

The	structure	of	C	programs,	continued

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>
#include	<ctype.h>

/*	Compile	this	program	with:
			cc	-std=c11	-Wall	-Werror	-o	rotate	rotate.c
	*/

#define	ROT	13

static	char	rotate(char	c)
{
				c	=	c	+	ROT;
			
				return	c;
}

int	main(int	argcount,	char	*argvalue[])
{	
				//	check	the	number	of	arguments
				if(argcount	!=	2)	{
							
								exit(EXIT_FAILURE);
				}
				else	{
							
								exit(EXIT_SUCCESS);
				}
				return	0;
}

Same	program,	but	more	to	note:

A	variety	of	brackets	are	employed,	in	pairs,	to	group
together	items	to	be	considered	in	the	same	way.	Here:

angle	brackets	enclose	a	filename	in	a	#include
directive,
round	brackets	group	items	in	arithmetic
expressions	and	function	calls,
square	brackets	enclose	the	index	when	access
arrays	(vectors	and	matrices...)	of	data,	and
curly	brackets	group	together	sequences	of	one	or
more	statements	in	C.	We	term	a	group	of
statements	a	block	of	statements.

Functions	in	C,	may	be	thought	of	as	a	block	of
statements	to	which	we	give	a	name.	In	our	example,
we	have	two	functions	-	rotate()	and	main().

When	our	programs	are	run	by	the	operating	system,
the	operating	system	always	starts	our	program	from
main().	Thus,	every	complete	C	program	requires	a
main()	function.

The	operating	system	passes	some	special	information
to	our	main()	function,	command-line	arguments,	and
main()	needs	a	special	syntax	to	receive	these.

Most	C	programs	you	read	will	name	main()'s
parameters	as	argc	and	argv.

When	our	program	finishes	its	execution,	it	returns
some	information	to	the	operating	system.	Our	example
here	exits	by	announcing	either	its	failure	or	success.

	

CITS2002	Systems	Programming,	Lecture	2,	p2,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 3 next	→ 	CITS2002 	CITS2002	schedule 	

Compiling	and	linking	our	C	programs
C	programs	are	human-readable	text	files,	that	we	term	source-code	files.

This	makes	them	very	easy	to	copy,	read,	and	edit	on	different	computers	and	different	operating	systems.	
C	is	often	described	as	being	portable	at	the	source-code	level.

Before	we	can	run	(execute)	our	C	programs,	we	must	translate,	or	compile,	their	source-code	files	to	files	that	the	operating
system	can	better	manage.	
A	program	known	as	a	compiler	translates	(compiles)	source-code	files	into	object-code	files.

Finally,	we	translate	or	link	one	or	more	object-code	files	to	produce	an	executable	program,	often	termed	a	'binary',	an
'executable',	or	an	'exe'	file.	
A	program	known	as	a	linker	performs	this	translation,	also	linking	our	object-code	file(s)	with	standard	libraries	and	(optionally)
3rd-party	libraries.

Depending	on	how	we	invoke	the	compiler,	sometimes	we	can	'move'	straight	from	the	source-code	files	to	the	executable
program,	all	in	one	step.	
In	reality	the	compiler	is	'silently'	executing	the	linker	program	for	us,	and	then	removing	any	unwanted	object-files.

	

CITS2002	Systems	Programming,	Lecture	2,	p3,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 4 next	→ 	CITS2002 	CITS2002	schedule 	

Variables
Variables	are	locations	in	a	computer's	memory.	A	typical	desktop	or	laptop	computer	will	have	8-32GB	of	memory,	or	eight
to	thirty-two	billion	addressable	memory	locations,

A	typical	C	program	will	use	4	bytes	to	hold	a	single	integer	value,	or	8	bytes	to	hold	a	single	floating-point	value.

Any	variable	can	only	hold	a	single	value	at	any	time	-	they	do	not	maintain	a	history	of	past	values	they	once	had.

Naming	our	variables
To	make	programs	more	readable,	we	provide	variables	with	simple	names.	We	should	carefully	choose	names	to	reflect
the	role	of	the	variable	in	our	programs.

While	variable	names	can	be	almost	anything	(but	not	the	same	as	the	keywords	in	C)	there's	a	simple	restriction	on
the	permitted	characters	in	a	name	-

they	must	commence	with	an	alphabetic	or	the	underscore	character	(_	A-Z	a-z),	and
be	followed	by	zero	or	more	alphabetic,	underscore	or	digit	characters	(_	A-Z	a-z	0-9).

C	variable	names	are	case	sensitive,	thus:

MYLIMIT,		mylimit,		Mylimit		and		MyLimit

are	four	different	variable	names.

While	not	required,	it's	preferred	that	variable	names	do	not	consist	entirely	of	uppercase	characters.	
We'll	consistently	use	uppercase-only	names	for	constants	provided	by	the	C	preprocessor,	or	user-defined	type
names:

MAXLENGTH,		AVATAR,		BUFSIZ,		and		ROT

Older	C	compilers	limited	variable	names	to,	say,	8	unique	characters.	Thus,	for	them,

turn_nuclear_reactor_coolant_on				and				turn_nuclear_reactor_coolant_off

are	the	same	variable!	Keep	this	in	mind	if	ever	developing	portable	code	for	old	environments.

	

CITS2002	Systems	Programming,	Lecture	2,	p4,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 5 next	→ 	CITS2002 	CITS2002	schedule 	

Basic	datatypes
Variables	are	declared	to	be	of	a	certain	datatype,	or	just	type.

We	use	different	types	to	represent	the	permissible	values	that	a	program's	variable	has.

For	example,	if	we're	using	a	variable	to	just	count	things,	we'll	use	an	integer	variable	to	hold	the	count;	if	performing
trigonometry	on	angles	expressed	in	radians,	we'll	use	floating-point	variables	to	hold	values	with	both	an	integral	and	a
fractional	part.

C	provides	a	number	of	standard,	or	base	types	to	hold	commonly	required	values,	and	later	we'll	see	how	we	can	also
define	our	own	user-defined	types	to	meet	our	needs.

Let's	look	quickly	at	some	of	C's	base	datatypes:

typename description,	and	an	example	of	variable	initialization

bool Boolean	(truth	values),	which	may	only	hold	the	values	of	either	true	or	false	
e.g.		bool	finished	=	false;

char
character	values,	to	each	hold	a	single	values	such	as	an	alphabetic	character,	a	digit	character,	a
space,	a	tab...	
e.g.		char	initial	=	'C';

int integer	values,	negative,	positive,	and	zero	
e.g.		int	year	=	2006;

float floating	point	values,	with	a	typical	precision	of	10	decimal	digits	(on	our	lab	machines)	
e.g.		float	inflation	=	5.1;

double "bigger"	floating	point	values,	with	a	typical	precision	of	17	decimal	digits	(on	our	lab	machines)	
e.g.		double	pi	=	3.1415926535897932;

Some	textbooks	will	(too	quickly)	focus	on	the	actual	storage	size	of	these	basic	types,	and	emphasise	the	ranges	of
permissible	values.	When	writing	truly	portable	programs	-	that	can	execute	consistently	across	different	hardware
architectures	and	operating	systems	-	it's	important	to	be	aware	of,	and	avoid,	their	differences.	We'll	examine	this	issue
later,	but	for	now	we'll	focus	on	using	these	basic	types	in	their	most	obvious	ways.

From	where	does	the	bool	datatype	get	its	name?	-	the	19th	century	mathematician	and	philosopher,	George	Boole.

	

CITS2002	Systems	Programming,	Lecture	2,	p5,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
http://en.wikipedia.org/wiki/George_Boole

CITS2002	Systems	Programming		

←	prev 6 next	→ 	CITS2002 	CITS2002	schedule 	

The	Significance	of	Integers	in	C
Throughout	the	1950s,	60s,	and	70s,	there	were	many	more	computer	hardware	manufacturers	than	there	are	today.	Each
company	needed	to	promote	its	own	products	by	distinguishing	them	from	their	competitors.

At	a	low	level,	different	manufacturers	employed	different	memory	sizes	for	a	basic	character	-	some	just	6	bits,	some	8
bits,	9,	and	10.	The	unfortunate	outcome	was	the	incompatability	of	computer	programs	and	data	storage	formats.

The	C	programming	language,	developed	in	the	early	1970s,	addressed	this	issue	by	not	defining	the	required	size	of	its
datatypes.	Thus,	C	programs	are	portable	at	the	level	of	their	source	code	-	porting	a	program	to	a	different	computer
architecture	is	possible,	provided	that	the	programs	are	compiled	on	(or	for)	each	architecture.	The	only	requirement	was
that:

sizeof(char)	≤	sizeof(short)	≤	sizeof(int)	≤	sizeof(long)

Since	the	1980s,	fortunately,	the	industry	has	agreed	on	8-bit	characters	or	bytes.	But	(compiling	and)	running	the	C
program	on	different	architectures:

#include	<stdio.h>

int	main(void)
{
				printf("char		%lu\n",	sizeof(char));
				printf("short	%lu\n",	sizeof(short));
				printf("int			%lu\n",	sizeof(int));
				printf("long		%lu\n",	sizeof(long));
				return	0;
}

may	produce	different	(though	still	correct)	results:

char		1
short	2
int			4
long		8

It's	permissible	for	different	C	compilers	on	different	architectures
to	employ	different	sized	integers.

Why	does	this	matter?	Different	sized	integers	can	store	different	maximum	values	-	the	above	datatypes	are	signed
(supporting	positive	and	negative	values)	so	a	4-byte	integer	can	only	represent	the	values	-
2,147,483,648	to	2,147,483,647.

If	employing	integers	for	'simple'	counting,	or	looping	over	a	known	range	of	values,	there's	rarely	a	problem.	But	if	using
integers	to	count	many	(small)	values,	such	as	milli-	or	micro-seconds,	it	matters:

Fun	fact:	GPS	uses	10	bits	to	store	the	week.	That	means	it	runs	out...	oh	heck	?	April	6,	2019
Airlines	Have	To	Reboot	Their	Airbus	A350	Planes	After	Every	149	Hours
To	keep	a	Boeing	Dreamliner	flying,	reboot	once	every	248	days

	

CITS2002	Systems	Programming,	Lecture	2,	p6,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php
https://www.theregister.co.uk/2019/02/12/current_gps_epoch_ends/
https://www.ubergizmo.com/2019/07/airlines-have-to-reboot-their-airbus-a350-planes-after-every-149-hours/
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/

CITS2002	Systems	Programming		

←	prev 7 next	→ 	CITS2002 	CITS2002	schedule 	

The	scope	of	variables
The	scope	of	a	variable	describes	the	range	of	lines	in	which	the	variable	may	be	used.	Some	textbooks	may	also	term	this
the	visibility	or	lexical	range	of	a	variable.

C	has	only	2	primary	types	of	scope:

global	scope	(sometimes	termed	file	scope)	in	which	variables	are	declared	outside	of	all	functions	and	statement
blocks,	and

block	scope	in	which	variables	are	declared	within	a	function	or	statement	block.

01		#include	<stdio.h>
02		#include	<stdlib.h>
03		#include	<string.h>
04		#include	<ctype.h>
05
06		static	int	count	=	0;
07
08		int	main(int	argcount,	char	*argvalue[])
09		{
10						int	nfound	=	0;
11
12						//	check	the	number	of	arguments
13						if(argcount	!=	2)	{
14										int	nerrors	=	1;
15
16									
17										exit(EXIT_FAILURE);
18						}
19						else	{
20										int	ntimes	=	100;
21
22									
23										exit(EXIT_SUCCESS);
24						}
25						return	0;
26		}

The	variable	count	has	global	scope.

It	is	defined	on	line	06,	and	may	be	used	anywhere	from
line	06	until	the	end	of	the	file	(line	26).

The	variable	count	is	also	preceded	by	the	keyword
static,	which	prevents	it	from	being	'seen'	(read	or	written)
from	outside	of	this	file	rotate.c

The	variable	nfound	has	block	scope.

It	is	defined	on	line	10,	and	may	be	used	anywhere	from
line	10	until	the	end	of	the	block	in	which	it	was	defined
(until	line	26).

The	variable	nerrors	has	block	scope.

It	is	defined	on	line	14,	and	may	be	used	anywhere	from
line	14	until	line	18.

The	variable	ntimes	has	block	scope.

It	is	defined	on	line	20,	and	may	be	used	anywhere	from
line	20	until	line	24.

We	could	define	a	different	variable	named	nerrors	in	the
block	of	lines	20-24	-	without	problems.

We	could	define	a	different	variable	named	nfound	in	the
block	of	lines	20-24	-	but	this	would	be	a	very	bad
practice!

	

CITS2002	Systems	Programming,	Lecture	2,	p7,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 8 next	→ 	CITS2002 	CITS2002	schedule 	

Flow	of	control	in	a	C	program
A	program's	control	flow	describes	how	sequences	of	statements	are	executed.	
Flow	control	in	a	C	program	is	very	similar	to	most	other	imperative	and	object-oriented	languages.

C	programs	commence	their	execution	at	their	main()	function,	execute	their	statements,	and	exit	(return	the	flow	of
control)	to	the	operating	system.

It's	fairly	obvious	that	statements	need	to	be	executed	in	a	well-defined	order,	as	we	expect	programs	to	always
behave	the	same	way	(unless	some	random	data	directs	the	execution	path,	as	in	computer	games,	simulations,	and
heuristic	algorithms).

Default	flow	of	control	executes	each	statement	in	order,	top-to-bottom.

Programs	that	only	execute	from	top-to-bottom	are	pretty	boring,	and	we	need	to	control	their	flow	with	a	variety	of
conditional	statements,	loops,	and	function-calls.

	

CITS2002	Systems	Programming,	Lecture	2,	p8,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 9 next	→ 	CITS2002 	CITS2002	schedule 	

Conditional	execution
Conditional	statements	first	evaluate	a	Boolean	condition	and	then,	based	on	whether	it's	true	or	false,	execute	other	statements.

The	most	common	form	is: Sometimes,	the	else	clause	is	omitted: Often,	the	else	clause	provides	further	if
statements:

if(condition1)	{																
		//	more	statements;
	
}
else	{
		//	more	statements;
	
}

if(condition1)	{																
		//	more	statements;
	
}

if(condition1)	{																
		//	more	statements;
	
}
else	if(condition2)	{
		//	more	statements;
	
}
else	{
		//	more	statements;
	
}

Note	that	in	the	examples,	above,	each	block	of	statements	to	be	executed	has	been	written	within	curly-brackets.

The	curly-brackets	are	not	required	(we	could	just	write	a	single	statement	for	either	if	or	else	clause).	However,	adding	curly-
brackets	is	considered	a	good	practice.	They	provide	a	safeguard	for	when	additional	statements	are	added	later.

	

CITS2002	Systems	Programming,	Lecture	2,	p9,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 10 next	→ 	CITS2002 	CITS2002	schedule 	

Boolean	values
Of	significance,	and	a	very	common	cause	of	errors	in	C	programs,	is	that	C	standards,	prior	to	ISO-C99,	had	no	Boolean	datatype.

Historically,	an	integer	value	of	zero	evaluated	equivalent	to	a	Boolean	value	of	false;	any	non-zero	integer	value	evaluated	as	true.

You	may	read	some	older	C	code: which	may	be	badly	and	accidently	coded	as: so,	employ	defensive	programming:

int	initialised	=	0;	//	set	to	false
....

if(!	initialised)	{																
		//	initialisation	statements;
	
		initialised	=	1;	//	set	to	true
}

int	initialised	=	0;	//	set	to	false
....

if(initialised	=	0)	{																
		//	initialisation	statements;
	
		initialised	=	1;	//	set	to	true
}

int	initialised	=	0;	//	set	to	false
....

if(0	=	initialised)	{	//	invalid	syntax!
		//	initialisation	statements;
	
		initialised	=	1;	//	set	to	true
}

In	the	second	example,	the	conditional	test	always	evaluates	to	false,	as	the	single	equals	character	requests	an	assignment,	not	a	comparison.

It	is	possible	(and	occassionally	reasonable)	to	perform	an	assignment	as	part	of	a	Boolean	condition	-	
you'll	often	see:

				while((nextch	=	getc(file))	!=	EOF)	{....

Whenever	requiring	the	true	and	false	constants	(introduced	in	C99),	we	need	to	provide	the	line:

		#include	<stdbool.h>

	

CITS2002	Systems	Programming,	Lecture	2,	p10,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 11 next	→ 	CITS2002 	CITS2002	schedule 	

Switch	statements
When	the	same	(integer)	expression	is	compared	against	a	number	of	distinct	values,	it's	preferred	to	evaluate	the	expression	once,	and
compare	it	with	possible	values:

Cascading	if..else..if..	statements: The	equivalent	switch	statement: Less-common	features	of	the	switch	statement:

if(expression	==	value1)	{
		//	more	statements;
	
}
else	if(expression	==	value2)	{
		//	more	statements;
	
}
else	{
		//	more	statements;
	
}

switch	(expression)	{										
		case	value1	:
		//	more	statements;
			
				break;

		case	value2	:
				//	more	statements;
			
				break;

		default	:
				//	more	statements;
			
				break;
}

switch	(expression)	{
		case	value1	:
		case	value2	:
				//	handle	either	value1	or	value2
			
				break;

		case	value3	:
				//	more	statements;
			
				//	no	'break'	statement,	drop	through

		default	:
				//	more	statements;
			
				break;

}

Typically	the	'expression'	is	simply	an	identifier,	but	it	may	be	arbitrarily	complex	-	such	as	an	arithmetic	expression,	or	a	function
call.
The	datatype	of	the	'expression'	must	be	an	integer	(which	includes	characters,	Booleans,	and	enumerated	types),	but	it	cannot	be	a
real	or	floating-point	datatype.
The	break	statement	at	the	end	of	each	case	indicates	that	we	have	finished	with	the	'current'	value,	and	control-flow	leaves	the
switch	statement.	
Without	a	break	statement,	control-flow	continues	"downwards",	flowing	into	the	next	case	branch	(even	though	the	expression
does	not	have	that	case's	value!).
switch	statements	with	'dense'	values	(none,	or	few	integer	missing)	provide	good	opportunities	for	optimised	code.
There	is	no	need	to	introduce	a	new	block,	with	curly-brackets,	unless	you	need	to	define	new	local	variables	for	specific	case
branches.

	

CITS2002	Systems	Programming,	Lecture	2,	p11,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 12 next	→ 	CITS2002 	CITS2002	schedule 	

Flow	of	control	in	a	C	program	-	bounded	loops
One	of	the	most	powerful	features	of	computers,	in	general,	is	to	perform	thousands,	millions,	of	repetitive	tasks	quickly

(in	fact,	one	of	the	motivating	first	uses	of	computers	in	the	1940s	was	to	calculate	trigonometric	tables	for	the	firing	of	artillery
shells).

C	provides	its	for	control	statement	to	loop	through	a	sequence	of	statements,	a	block	of	statements,	a	known	number	of	times:

The	most	common	form	appears	below,	in	which	we	introduce
a	loop	control	variable,	i,	to	count	how	many	times	we	go
through	the	loop:

The	loop	control	variable	does	not	always	have	to	be	an
integer:

//	here,	variable	i	holds	the	values	1,2,...10

for(int	i	=	1	;	i	<=	10	;	i	=	i+1)	{
//	the	above	introduced	a	loop-control	variable,	i
	
		printf("loop	number	%i\n",	i);
	
//	variable	i	is	available	down	to	here
}

//	but	variable	i	is	not	available	from	here

//	here,	variable	ch	holds	each	lowercase	value

for(char	ch	=	'a'	;	ch	<=	'z'	;	ch	=	ch+1)	{
	
		printf("loop	using	character	'%c'\n",	ch);
	
}

Notice	that	in	both	cases,	above,	we	have	introduced	new	variables,	here	i	and	ch,	to	specifically	control	the	loop.

The	variables	may	be	used	inside	each	loop,	in	the	statement	block,	but	then	"disappear"	once	the	block	is	finished	(after	its	bottom
curly	bracket).

It's	also	possible	to	use	any	other	variable	as	the	loop	control	variable,	even	if	defined	outside	of	the	for	loop.	In	general,	we'll	try	to
avoid	this	practice	-	unless	the	value	of	the	variable	is	required	outside	of	the	loop.

	

CITS2002	Systems	Programming,	Lecture	2,	p12,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 13 next	→ 	CITS2002 	CITS2002	schedule 	

Flow	of	control	in	a	C	program	-	unbounded	loops
The	for	loops	that	we've	just	seen	should	be	used	when	we	know,	ahead	of	time,	how	many	times	we	need	to	loop	(i.e.	10
times,	or	over	the	range	'a'..'z').

Such	loops	are	termed	bounded	loops	and,	unless	we've	made	an	unseen	coding	error,	always	terminate	after	a	fixed
number	of	iterations.

There	are	also	many	occasions	when	we	don't	know,	ahead	of	time,	how	many	iterations	may	be	required.	Such	occasions
require	unbounded	loops.

C	provides	two	types	of	unbounded	loop:

The	most	common	is	the	while	loop,	where	zero	or
more	iterations	are	made	through	the	loop:

Less	common	is	the	do....while	loop,	where	at	least	one
iteration	is	made	through	the	loop:

#define		NLOOPS				20

int	i	=	1;
int	n	=	0;

while(i	<=	NLOOPS)	{
				printf("iteration	number	%i\n",	i);
			
			
				i	=	some_calculation_setting_i;
				n	=	n	+	1;
}

printf("loop	was	traversed	%i	times\n",	n);

#define		NLOOPS				20

int	i	=	1;
int	n	=	0;

do	{
				printf("iteration	number	%i\n",	i);
			
			
				i	=	some_calculation_setting_i;
				n	=	n	+	1;
}	while(i	<=	NLOOPS);

printf("loop	was	traversed	%i	times\n",	n);

Notice	that	in	both	cases	we	still	use	a	variable,	i,	to	control	the	number	of	iterations	of	each	loop,	and	that	the	changing
value	of	the	variable	is	used	to	determine	if	the	loop	should	"keep	going".

However,	the	statements	used	to	modify	the	control	variable	may	appear	almost	anywhere	in	the	loops.	They	provide
flexibility,	but	can	also	be	confusing	when	loops	become	severals	tens	or	hundreds	of	lines	long.

Notice	also	that	while,	and	do....while	loops	cannot	introduce	new	variables	to	control	their	iterations,	and	so	we	have	to
use	existing	variables	from	an	outer	lexical	scope.

	

CITS2002	Systems	Programming,	Lecture	2,	p13,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 14 next	→ 	CITS2002 	CITS2002	schedule 	

Writing	loops	within	loops
There's	a	number	of	occassions	when	we	wish	to	loop	a	number	of	times	(and	so	we	use	a	for	loop)	and	within	that	loop	we
wish	to	perform	another	loop.	While	a	little	confusing,	this	construct	is	often	quite	common.	It	is	termed	a	nested	loop.

#define		NROWS					6
#define		NCOLS					4

for(int	row	=	1	;	row	<=	NROWS	;	row	=	row+1)	{						//	the	'outer'	loop

				for(int	col	=	1	;	col	<=	NCOLS	;	col	=	col+1)	{		//	the	'inner'	loop
								printf("(%i,%i)		",	row,	col);															//	print	row	and	col	as	if	"coordinates"		
				}
				printf("\n");																																				//	finish	printing	on	this	line
}

The	resulting	output	will	be:

				(1,1)		(1,2)		(1,3)		(1,4)		
				(2,1)		(2,2)		(2,3)		(2,4)		
				(3,1)		(3,2)		(3,3)		(3,4)		
				(4,1)		(4,2)		(4,3)		(4,4)		
				(5,1)		(5,2)		(5,3)		(5,4)		
				(6,1)		(6,2)		(6,3)		(6,4)

Notice	that	we	have	two	distinct	loop-control	variables,	row	and	col.

Each	time	that	the	inner	loop	(col's	loop)	starts,	col's	value	is	initialized	to	1,	and	advances	to	4	(NCOLS).

As	programs	become	more	complex,	we	will	see	the	need	for,	and	write,	all	combinations	of:

for	loops	within	for	loops,
while	loops	within	while	loops,
for	loops	within	while	loops,
and	so	on....

	

CITS2002	Systems	Programming,	Lecture	2,	p14,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 15 next	→ 	CITS2002 	CITS2002	schedule 	

Changing	the	regular	flow	of	control	within	loops
There	are	many	occasions	when	the	default	flow	of	control	in	loops	needs	to	be	modified.

Sometimes	we	need	to	leave	a	loop	early,	using	the	break
statement,	possibly	skipping	some	iterations	and	some
statements:

Sometimes	we	need	to	start	the	next	iteration	of	a	loop,	even
before	executing	all	statements	in	the	loop:

for(int	i	=	1	;	i	<=	10	;	i	=	i+1)	{
				//	Read	an	input	character	from	the	keyboard
			
				if(input_char	==	'Q')	{	//	Should	we	quit?
								break;
				}
			
			
}
//	Come	here	after	the	'break'.		i	is	unavailable

for(char	ch	=	'a'	;	ch	<=	'z'	;	ch	=	ch+1)	{
				if(ch	==	'm')	{	//	skip	over	the	character	'm'
								continue;
				}
			
			
				statements	that	will	never	see	ch	==	'm'
			
			
}

In	the	first	example,	we	iterate	through	the	loop	at	most	10	times,	each	time	reading	a	line	of	input	from	the	keyboard.	If	the	user
indicates	they	wish	to	quit,	we	break	out	of	the	bounded	loop.

In	the	second	example,	we	wish	to	perform	some	work	for	all	lowercase	characters,	except		'm'.	
We	use	continue	to	ignore	the	following	statements,	and	to	start	the	next	loop	(with	ch	==	'n').

	

CITS2002	Systems	Programming,	Lecture	2,	p15,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 16 next	→ 	CITS2002 	CITS2002	schedule 	

The	equivalence	of	bounded	and	unbounded	loops
We	should	now	be	able	to	see	that	the	for,	while,	and	do	...	while	control	flow	statements	are	each	closely	related.

To	fully	understand	this,	however,	we	need	to	accept	(for	now),	that	the	three	"pieces"	of	the	for	construct,	are	not	always	initialization,
condition,	modification.

More	generally,	the	three	pieces	may	be	C	expressions	-	for	the	moment	we'll	consider	these	as	C	statements	which,	if	they	produce	a
value,	the	value	is	often	ignored.

The	following	loops	are	actually	equivalent:

for(expression1	;	expression2	;	expression3)	{
				statement1;
			
}

expression1;																																									
while(expression2)	{
				statement1;
			
				expression3;
}

In	both	cases,	we're	expecting	expression2	to	produce	a	Boolean	value,	either	true	or	false,	as	we	need	that	truth	value	to	determine	if
our	loops	should	"keep	going".

You	should	think	about	these	carefully,	perhaps	perform	some	experiments,	to	determine	where	control	flow	really	goes	when	we
introduce	break	and	continue	statements.

	

CITS2002	Systems	Programming,	Lecture	2,	p16,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 17 next	→ 	CITS2002 	CITS2002	schedule 	

Some	unusual	loops	you	will	encounter
As	you	read	more	C	programs	written	by	others,	you'll	see	some	statements	that	look	like	for	or	while	loops,	but	appear	to
have	something	missing.	
In	fact,	any	(or	all!)	of	the	3	"parts"	of	a	for	loop	may	be	omitted.

For	example,	the	following	loop	initially	sets	i	to	1,	and	increments	it	each	iteration,	but	it	doesn't	have	a	"middle"
conditional	test	to	see	if	the	loop	has	finished.	The	missing	condition	constantly	evaluates	to	true:	

for(int	i	=	1	;	/*	condition	is	missing	*/	;	i	=	i+1)	{
			
			
}

Some	loops	don't	even	have	a	loop-control	variable,	and	don't	test	for	their	termination.	This	loop	will	run	forever,	until	we
interrupt	or	terminate	the	operating	system	process	running	the	C	program.	
We	term	these	infinite	loops	:	

//	cryptic	-	avoid	this	mechanism
for(;	;)	{
			
			
}

#include	<stdbool.h>

//	clearer	-	use	this	mechanism
while(true)	{
			
			
}

While	we	often	see	and	write	such	loops,	we	don't	usually	want	them	to	run	forever!

We	will	typically	use	an	enclosed	condition	and	a	break	statement	to	terminate	the	loop,	either	based	on	some	user	input,
or	the	state	of	some	calculation.

	

CITS2002	Systems	Programming,	Lecture	2,	p17,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

CITS2002	Systems	Programming		

←	prev 18 	CITS2002 	CITS2002	schedule 	

Lecture	2	Summary

C11	is	a	small	programming	language	(in	terms	of	its	number	of	keywords),	although	some	aspects	can	be	difficult	to
learn	when	compared	to	newer	languages.

C	is	a	compiled	programming	language.	The	human-readable	source	code	of	a	C	program	needs	translating	to
executable	machine	code	before	the	program	can	be	executed.

Unlike	Python	programs,	white-space	is	insignificant	and	is	not	used	to	define	lexical	scoping.	New	lexical	blocks	are
introduced	with	curly	brackets.

Alphabetic	case	is	significant.	Any	colour	seen	in	textbooks	or	possibly	(visually)	added	by	your	text	editor,	is
insignificant.

C	provides	a	number	of	integer	data	types,	of	differing	system-dependent	widths,	and	two	floating-point	data	types.
Data	types	of	exact	widths	may	be	explictly	specified	for	architecture-specific	programming.

Floating-point	data	types	are	only	very	rarely	used	in	systems	programming.

C's	control-flow	statements	-	conditional	statements,	bounded	and	unbounded	loops,	and	nested	instances	of	these,
and	unconditional	control-flow	-	execute	similarly	to	equivalent	statements	in	other	languages,	although	their	syntax
may	appear	unusual.

	

CITS2002	Systems	Programming,	Lecture	2,	p18,	24th	July	2024.

http://teaching.csse.uwa.edu.au/units/CITS2002/index.php
http://teaching.csse.uwa.edu.au/units/CITS2002/schedule.php

	The structure of C programs
	The structure of C programs, continued
	Compiling and linking our C programs
	Variables
	Naming our variables
	Basic datatypes
	The Significance of Integers in C
	The scope of variables
	Flow of control in a C program
	Conditional execution
	Boolean values
	Switch statements
	Flow of control in a C program - bounded loops
	Flow of control in a C program - unbounded loops
	Writing loops within loops
	Changing the regular flow of control within loops
	The equivalence of bounded and unbounded loops
	Some unusual loops you will encounter
	Lecture 2 Summary

