CITS1001 in a nutshell page 1
Rachel Cardell-Oliver Version 2.0 2013

Terminology for Java Classes

/* TicketMachine models a naive ticket machine

Javadoc * @author David J. Barnes and Michael K6lling
comment * @version 2011.07.31
*/

Class definition public class TicketMachine

{

Constant public final static int MAX PRICE = 100;
Field private int price;
declaratlons private lnt balance;
Visibili /**
151 ,l_lty * Create a machine that issues tickets
modifiers ny

public TicketMachine (int cost)
Constructor {

price = cost;

Parameter balance = 0;
(cost) }
Accessor
methods public int getPrice() { return price; }
(getters)

public int getBalance() { return balance; }
Return type
(int)
Mutator public void insertMoney (int amount)

{
methods balance = balance + amount;
(setters))

public void printTicket ()
Method {

Signature System.out.println("# Ticket " +

price + " cents.");
balance = 0;
Method body

CITS1001 in a nutshell
Rachel Cardell-Oliver Version 2.0 2013

page

Java Data Declare and Instantiate Examples of Use
Types
boolean, boolean found = false; (!'found && 1<10)
int, int 1i; i++;
double, char | double pi = 3.14; i=1+1;
char ch = ‘a’; a = r*r*pi;
byte, short,
long, float
String String msgl = “hello ”; msgl+msg2; //”hello there”
String msg2 = “there” msgl.equals (“hello “);
msgl.contains (“1o0”) ;
ArrayList<E> | ArrayList<String> names = new names.add (“Ben”) ;
ArrayList<String>(); names.add (“*Moose Smith”);
names.get (names.size()-1);
ArrayList<Student> classlist; //get last name
classlist = new
ArrayList<Student> () ;
classlist.add (new
Student (“fred”,100)) ;
arrays int[] mode = new int[10]; int places = new int[]
{1,2,3,4,5};
String[] = new String[5]; (places.length == 5)
places[0]=places[0] - 2;
//was 1 now -1
places[4]=places[3] * 3;
//pos 4 w 5 now 12
HashMap<K, V> | HashMap<String, String> phonebook.put (“fred”,”+61
phonebook; 345 6677");
phonebook.get (Vfred”) ;
//is String “+61..”
phonebook = new phonebook.size ()
HashMap<String, String> () ; phonebook. keySet ()
//all the keys (names)
phonebook.values ()
//all the values (ph nums)
HashSet<E> HashSet<String> words = for (String word

new HashSet<String>();

wordArray) |
words.add (word) ;
}
words.contains (“hello”)
words.size ()

CITS1001 in a nutshell page 3
Rachel Cardell-Oliver Version 2.0 2013

Programming Patterns

Programming patterns correspond to fragments of code that accomplish common
programming goals. Bergin notes that “A "pattern” is a solution to a problem in a
context. ... a pattern is an attempt to establish "best practice" with respect to a problem
or class of problems.”

Whether Or Not
Whether Or Not is a selection pattern. Bergen describes the Whether Or Not pattern as:

“You are in a situation in which some action may be appropriate or inappropriate
depending on some testable condition. ... You don't need to repeat the action, only to
decide whether or not it should be done. There are no other actions to do instead of this
one. You want to write simply understood code."

For example: a bank deposit method should only update the balance if the amount
deposited is positive:

if (amount > balance) {
balance = balance + amount;

}

Whether Or Not with warning

Barnes and Kolling use a variant of the Whether Or Not pattern in which an else branch
containing only print statement(s) is used to inform the user of the error condition. For
example,

if (amount > balance) {
balance += amount ;
} else {
System.out.println ("amount must be >0");

Alternative Action (Selection)
Bergen describes this pattern as follows:

You are in a situation in which one of exactly two actions is appropriate depending on
some testable condition.

When the condition holds you want to do one action, and when it does not hold you
want to do some different action. There are exactly two actions and exactly one
condition, which may be true or false.

Therefore, use a single IF statement with an ELSE part, expressing the test as a
positive condition.

CITS1001 in a nutshell page 4
Rachel Cardell-Oliver Version 2.0 2013

IF <condition>

<one action>
ELSE

<another action>

For example a student may pass or fail an exam depending on the value of the numeric
grade.

if (numericGrade > 50) {
output ("passing");

} else {
output ("failing");

}

Process All Items

Process All Items is a loop pattern. Astrachan and Wallingford describe the Process
All Items pattern as: “The items are stored in an array a. Use a definite loop to process
all the items." For example,

for (int k=0; k < a.length; k++) {

process alk 1;

}

Barnes and Koélling give a for-each version of this pattern for collections (and arrays
since Java 5)

ArrayList<String> names = new ArrayList<String>();

for (String ni: names) {
process ni;

Search

You are working with a collection or stream of objects.
How do you find an object that meets a specific condition?

Suppose that you have a set of students, and you would like to find the first student
with an "A" average. In the worst case, you will look at the whole collection before
finding your target. But, if you find a match sooner, you would like to terminate the
search and work with the object that you found.

CITS1001 in a nutshell page
Rachel Cardell-Oliver Version 2.0 2013

Therefore, construct a Process All Items loop, but provide a way to exit the loop early
should you find your target sooner.

ArrayList<String> names = new ArrayList<String>();
String key; //String to search for

for (String ni: names) {
if (ni.equals(key)) {
return true; //key is found
}
}

return false; //when key not found

Temporary variable patterns

The process all items pattern usually requires some local variable(s).

Beck describes several different patterns for local variable use:

“How do you save the value of an expression for later use within a method? ...
wherever possible create variables whose scope and extent is a single method. Declare

them just below the method selector. Assign them a value as soon as the expression is
valid. ...

Collecting Temporary Variable ... saves intermediate results for later use.

int[]a = new int[] {0,-1,3,4,-5,-6,10};

int countnegs = 0;
for (int ai : a) {
if (ai < 0) {
countneg++;

}

return countneg;
Caching Temporary Variable ... improves performance by saving values.

Explaining Temporary Variable ... improves readability by breaking up complex
expressions."

double[] scores = new double[12];
double avg = average (scores);
double sumsqg = 0;
for (double si : scores) {
double diff = (ai - avg) * (ai - avqg);

sumsg = sumsq + diff;
}
double stddev = (sum / a.length);
return stddev;

CITS1001 in a nutshell page 6
Rachel Cardell-Oliver Version 2.0 2013

In the example above, stddev and diff are explaining temporary variables.
sumsq is s collecting variable and avg is a caching temporary variable.

The Collecting temporary variable pattern is often combined with the Process All [tems
pattern to evaluate extreme values and for summing or counting a collection.

Further Reading

0. Astrachan and E. Wallingford. Loop patterns: Definite process all items, 1998.
Retrieved March 2012 from
http://www.cs.duke.edu/~ola/patterns/plopd/loops.html

D.]. Barnes and M. Kolling. Objects First with Java: A Practical Introduction using Blue].
Prentice Hall, Pearson Education, 5th edition, 2012.

K. Beck. Portland pattern repository: Temporary variables, 1995. Retrieved March
2012 from http://c2.com/ppr/temps.html

J. Bergin. Patterns for Selection Version 4, 1999. Retrieved March 2009 from
http://csis.pace.edu/~bergin/patterns/Patternsv4.html

CITS1001 in a nutshell page 7
Rachel Cardell-Oliver Version 2.0 2013

Properties of Java Applications

Most of the definitions in this section are from Barnes and Koélling, Objects First With Java.

Syntax

The syntax of the Java programming language is the set of rules that defines how a Java
program is written and interpreted.

Java’s grammar rules define the legal forms of Java statements, including correct use of
brackets, semi-colons and key words.

Java’s static typing rules check that all expressions are correctly typed.

The Java compiler flags syntax errors and type errors in Java code.

Logical Correctness

Alogical error is a problem where the program compiles and executes, but delivers the
wrong result. Techniques such as code inspection and JUnit unit testing can be used to
help to identify logical errors.

Style and Readability

A major goal of any software developer should be to write consistently clear, high quality,
maintainable code. This is not always easy and requires a certain amount of discipline at
the best of times. One way to help achieve high quality code is via the use of coding
standards. The programming style guide used in CITS1001 is available from
http://www.csse.uwa.edu.au/UWAJavaTools/checkstyle/ and is based on the Barnes and
Ko6lling Objects First with Java - Style Guide Version 2.0 from
www.bluej.org/objects-first/styleguide.html (and see appendix)

Coupling

Coupling describes the interconnectedness of classes. We strive for loose coupling in
a system - that is, a system where each class is largely independent and communicates
with other classes via a small, well-defined interface.

Well-designed classes should hide implementation information from view, making only
information about what a class can do should be visible to the outside, but not how it
does it. Proper encapsulation in classes reduces coupling and thus leads to a better
design.

One of the main goals of a good class design is that of localizing change: making changes
to one class should have minimal effects on other classes.

Cohesion

Cohesion describes how well a unit of code maps to a logical task or entity. In a highly
cohesive system, each unit of code (method, class, or module) is responsible for a well-
defined task or entity. Good class design exhibits a high degree of cohesion.

A cohesive method is responsible for one, and only one, well-defined task.

A cohesive class represents one well-defined entity.

High cohesion benefits a design by improving its readability and giving higher
potential for reuse.

CITS1001 in a nutshell page 8
Rachel Cardell-Oliver Version 2.0 2013

Efficiency

Java programs may be optimized to execute faster or to use less memory storage or
other resources. Sorting algorithms provide some good examples of the ways in which
the choice of algorithms and data structures affects performance. The topic of
efficiency will be covered in more detail in Data Structures and Algorithms.

