
Documentation and more advanced collections Class and constant variables

CITS1001 week 6
Libraries

Arran Stewart

April 12, 2018

1 / 52

Documentation and more advanced collections Class and constant variables

Announcements

Project 1 available
mid-semester test
self-assessment

2 / 52

Documentation and more advanced collections Class and constant variables

Outline

Using library classes to implement some more advanced
functionality

Using library classes
Reading documentation

Reading: Chapter 6 of Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling

3 / 52

Documentation and more advanced collections Class and constant variables

The Java class library

Thousands of classes.
Tens of thousands of methods.
Many useful classes that make life much easier.
Library classes are often inter-related.
Arranged into packages.

4 / 52

Documentation and more advanced collections Class and constant variables

Working with the library

A competent Java programmer must be able to work with the
libraries.

You should:
know some important classes by name;
know how to find out about other classes.

Remember:
we only need to know the interface, not the implementation.

5 / 52

Documentation and more advanced collections Class and constant variables

Example: an interactive text system

6 / 52

Documentation and more advanced collections Class and constant variables

Main loop structure

boolean finished = false;
while(!finished) {

// do something...
if(/* exit condition .. */) {

finished = true;
} else {

// do something more
}

}

This is a common iteration pattern.

7 / 52

Documentation and more advanced collections Class and constant variables

Main loop body

String input = reader.getInput();
//...
String response = responder.generateResponse();
System.out.println(response);

8 / 52

Documentation and more advanced collections Class and constant variables

The exit condition

String input = reader.getInput();
if(input.startsWith("bye")) {

finished = true;
}

Where does ‘startsWith’ come from?
What is it? What does it do?
How can we find out?

9 / 52

Documentation and more advanced collections Class and constant variables

Reading class documentation

Documentation of the Java libraries is in HTML format
readable in a web browser

Provides an API (Application Programmers’ Interface) for the
classes

i.e. an interface description for all library classes
Address: http://docs.oracle.com/javase/8/docs/api
(or just Google “oracle java API”)

10 / 52

http://docs.oracle.com/javase/8/docs/api

Documentation and more advanced collections Class and constant variables

String class

11 / 52

Documentation and more advanced collections Class and constant variables

String class

(Documentation is at http://docs.oracle.com/javase/8/docs/
api/index.html?java/lang/String.html)

12 / 52

http://docs.oracle.com/javase/8/docs/api/index.html?java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/index.html?java/lang/String.html

Documentation and more advanced collections Class and constant variables

Interface vs implementation

The documentation includes:

the name of the class;
a general description of the class;
a list of (public) constructors and methods
return values and parameters for constructors and methods
a description of the purpose of each constructor and method

All this comprises the interface of the class

13 / 52

Documentation and more advanced collections Class and constant variables

Interface vs implementation

The documentation does not include:

private fields (most fields are private)
private methods
the bodies (source code) of methods

These (hidden) details comprise the implementation of the class

14 / 52

Documentation and more advanced collections Class and constant variables

Documentation for startsWith

15 / 52

Documentation and more advanced collections Class and constant variables

Methods from String

contains
endsWith
indexOf
substring
toUpperCase
trim

On the topic of Strings:

note that Strings are immutable –
once it is created, a String object cannot be changed.

The String class has a number of methods that appear to modify strings –
Since Strings are immutable, what these methods really do is
create and return a new string that contains the result of the
operation.

See https://docs.oracle.com/javase/tutorial/java/data/strings.html
(Do you know if any classes we have seen are immutable?)

16 / 52

https://docs.oracle.com/javase/tutorial/java/data/strings.html

Documentation and more advanced collections Class and constant variables

Using library classes

Classes are organized into packages.
To use a class from the library, it must be imported using an
import statement (except classes from the java.lang
package).
Once imported, a class can then be used like classes from the
current project.

17 / 52

Documentation and more advanced collections Class and constant variables

Packages and import

Using an import statement . . .

. . . we can import single classes:

import java.util.ArrayList;

. . . and whole packages of classes:

import java.util.*;

Importation does not involve source code insertion.

18 / 52

Documentation and more advanced collections Class and constant variables

Example: using Random

The library class Random can be used to generate random
numbers

import java.util.Random;
// ...
Random rand = new Random();
// ...
int num = rand.nextInt();
int value = 1 + rand.nextInt(100);
int index = rand.nextInt(list.size());

19 / 52

Documentation and more advanced collections Class and constant variables

Examples cont’d

How could we fill an ArrayList with (say) 10 random integers
between 0 and 25 (inclusive)?

Random randomGenerator = new Random();
ArrayList nums = new ArrayList<Integer>();
for (int i = 0; i < 10; i++) {

int num = rand.nextInt(26);
nums.add(num)

}

20 / 52

Documentation and more advanced collections Class and constant variables

Examples cont’d

How could we fill an ArrayList with (say) 10 random integers
between 0 and 25 (inclusive)?

Random randomGenerator = new Random();
ArrayList nums = new ArrayList<Integer>();
for (int i = 0; i < 10; i++) {

int num = rand.nextInt(26);
nums.add(num)

}

20 / 52

Documentation and more advanced collections Class and constant variables

Examples cont’d

Suppose we have an ArrayList containing Strings. How can
we print a randomly selected String from it?

ArrayList<String> myStrings = //..
// ..
Random randomGenerator = new Random();
int idx = rand.nextInt(myStrings.size());
System.out.println(myStrings.get(idx));

21 / 52

Documentation and more advanced collections Class and constant variables

Examples cont’d

Suppose we have an ArrayList containing Strings. How can
we print a randomly selected String from it?

ArrayList<String> myStrings = //..
// ..
Random randomGenerator = new Random();
int idx = rand.nextInt(myStrings.size());
System.out.println(myStrings.get(idx));

21 / 52

Documentation and more advanced collections Class and constant variables

Parameterized classes

For some classes, the documentation includes provision for a
type parameter:

ArrayList<E>
These type names reappear in the parameters and return types:

E get(int index)
boolean add(E e)

22 / 52

Documentation and more advanced collections Class and constant variables

Parameterized classes

The types in the documentation are placeholders for the types
we use in practice

Given the generic ArrayList methods . . .
E get(int index)
boolean add(E e)

. . . once we declare that something is an
ArrayList<TicketMachine>, it will end up having the
following methods:

TicketMachine get(int index)
boolean add(TicketMachine e)

23 / 52

Documentation and more advanced collections Class and constant variables

Documentation and more advanced collections

24 / 52

Documentation and more advanced collections Class and constant variables

Main concepts to be covered

We look at using library classes to implement some more advanced
functionality.

Further library classes
Set
Map

Writing documentation
javadoc

25 / 52

Documentation and more advanced collections Class and constant variables

Using sets

import java.util.HashSet;
//...
HashSet<String> mySet = new HashSet<String>();
mySet.add("one");
mySet.add("two");
mySet.add("three");
for(String element : mySet) {

// do something with element
}

Hopefully seems quite similar to an ArrayList

26 / 52

Documentation and more advanced collections Class and constant variables

Set example – words in a String

public HashSet<String> getInput() {
System.out.print("> ");
String inputLine =

reader.nextLine().trim().toLowerCase();
String[] wordArray = inputLine.split(" ");
HashSet<String> words = new HashSet<String>();
for(String word : wordArray) {

words.add(word);
}
return words;

}

27 / 52

Documentation and more advanced collections Class and constant variables

Maps

Maps are collections that contain pairs of values.
Pairs consist of a key and a value.
Lookup works by supplying a key, and retrieving a value.
Example: a telephone book.

28 / 52

Documentation and more advanced collections Class and constant variables

Using maps

A map with strings as keys and values

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

29 / 52

Documentation and more advanced collections Class and constant variables

Using maps

HashMap <String, String> phoneBook =
new HashMap<String, String>();

phoneBook.put("Charles Nguyen", "(531) 9392 4587");
phoneBook.put("Lisa Jones", "(402) 4536 4674");
phoneBook.put("William H. Smith", "(998) 5488 0123");

String phoneNumber = phoneBook.get("Lisa Jones");
System.out.println(phoneNumber);

Aside: why “hashmap”?

30 / 52

Documentation and more advanced collections Class and constant variables

List, Map and Set

Alternative ways to group objects.
Varying implementations available:

Lists: ArrayList, LinkedList
Sets: HashSet, TreeSet

31 / 52

Documentation and more advanced collections Class and constant variables

Writing class documentation

Your own classes should be documented the same way library
classes are.
Other people should be able to use your class without reading
the implementation.
i.e. Make your class a potential ‘library class’

32 / 52

Documentation and more advanced collections Class and constant variables

Elements of documentation

Documentation for a class should include:

the class name
a comment describing the overall purpose and characteristics of
the class
a version number
the authors’ names
documentation for each constructor and each method

33 / 52

Documentation and more advanced collections Class and constant variables

Elements of documentation

The documentation for each constructor and method should include:

the name of the method
the return type
the parameter names and types
a description of the purpose and function of the method
a description of each parameter
a description of the value returned

34 / 52

Documentation and more advanced collections Class and constant variables

Elements of documentation

purpose and function:

what does the caller need to ensure when calling the method?
if exceptions (we’ll cover these) are thrown, what sorts can
they be?
if side effects happen (i.e. something other than returning a
value), what are they?

e.g. printing to the screen; writing to a database or file;
changing the state of an object
(often void methods, but not always)

35 / 52

Documentation and more advanced collections Class and constant variables

javadoc

Class comment:
/**
* The Responder class represents a response
* generator object. It is used to generate an
* automatic response.
*
* @author Michael Kolling and David J. Barnes
* @version 1.0 (2011.07.31)
*/

36 / 52

Documentation and more advanced collections Class and constant variables

javadoc

Method comment:
/**
* Read a line of text from standard input (the text
* terminal), and return it as a set of words.
*
* @param prompt A prompt to print to screen.
* @return A set of Strings, where each String is
* one of the words typed by the user
*/

public HashSet<String> getInput(String prompt)
{

// ...
}

37 / 52

Documentation and more advanced collections Class and constant variables

Public vs private

Public elements are accessible to objects of other classes:
Fields, constructors and methods

Fields should not (usually) be public.
Private elements are accessible only to objects of the same
class.
Only methods that are intended for other classes should be
public.

38 / 52

Documentation and more advanced collections Class and constant variables

Information hiding

Data belonging to one object is hidden from other objects.
Know what an object can do, not how it does it.
Information hiding increases the level of independence.
Independence of modules is important for large systems and
maintenance.

39 / 52

Documentation and more advanced collections Class and constant variables

Aside: code completion in BlueJ

The BlueJ editor supports lookup of methods.
Use Ctrl-space after a method-call dot to bring up a list of
available methods.
Use Return to select a highlighted method.

40 / 52

Documentation and more advanced collections Class and constant variables

Code completion in BlueJ

41 / 52

Documentation and more advanced collections Class and constant variables

Class and constant variables

42 / 52

Documentation and more advanced collections Class and constant variables

Class variables

A class variable is shared between all instances of the class.
In fact, it belongs to the class and exists independent of any
instances.
Designated by the static keyword.
Public static variables are accessed via the class name; e.g.:

Thermometer.boilingPoint

43 / 52

Documentation and more advanced collections Class and constant variables

Class variables

44 / 52

Documentation and more advanced collections Class and constant variables

Constants

A variable, once set, can have its value fixed.
Designated by the final keyword.

final int max = list.size();
Final fields must be set in their declaration or the constructor.
Combining static and final is common.

45 / 52

Documentation and more advanced collections Class and constant variables

Class constants

static: class variable
final: constant

private static final int gravity = 3;

Public visibility is less of an issue with final fields.
Upper-case names often used for class constants:

public static final int BOILING_POINT = 100;

46 / 52

Documentation and more advanced collections Class and constant variables

Using the class Math

Whenever you need a mathematical function,
it will (probably) be in the class Math

java.lang.Math (can be referred to just as Math)

For example, Java does not have a built-in power operator, but
it is available in Math

public static double circleArea(double radius) {
double area = 3.14159 * Math.pow(radius,2);
return area;

}

47 / 52

Documentation and more advanced collections Class and constant variables

Math.random()

public static double random()

Returns a double x such that 0.0 <= x < 1.0

(Try it in the BlueJ Code Pad)

Example:
boolean isheads = Math.random() < 0.5;

48 / 52

Documentation and more advanced collections Class and constant variables

Math Constants

Class variables are often used to provide access to constants –
values that are frequently used but not changed
Constants can be numerical values

Math.PI
Math.E

public static double circleArea(double radius) {
return Math.PI * Math.pow(radius,2);

}

49 / 52

Documentation and more advanced collections Class and constant variables

Utility Classes

A class like Math that contains only static methods is
sometimes called a utility class, because it just provides
“utility” methods for use in other classes
There is no point in ever creating an object of the class Math
because it can never do anything that the existing methods
cannot do
(In fact it has been made impossible to create an object of the
class Math

this is done by giving a dummy constructor, but making it
private)

50 / 52

Documentation and more advanced collections Class and constant variables

Constant Objects: Colours

The class java.awt.Color makes available a number of
“pre-constructed” objects

Color.RED
Color.BLUE
...
Color.BLACK

You can use these colours without having to construct them
from scratch

See http:
//teaching.csse.uwa.edu.au/units/CITS1001/colorinfo.html for
more information about colors in Java

51 / 52

http://teaching.csse.uwa.edu.au/units/CITS1001/colorinfo.html
http://teaching.csse.uwa.edu.au/units/CITS1001/colorinfo.html

Documentation and more advanced collections Class and constant variables

Practice

Write constant declarations for the following:
A public variable to measure tolerance, with the value 0.001
A private variable to indicate a pass mark, with integer value of
40
A public character variable that is used to indicate that the help
command is ‘h’.

What constant names are defined in the java.lang.Math class?
Why do you think the methods in the Math class are static?
Could they be written as instance methods?
In a program that uses 73.28166 in ten different places, give
reasons why it makes sense to associate this value with a
variable name?

52 / 52

	Documentation and more advanced collections
	Class and constant variables

