CITS1001 week 5
Repetition

Arran Stewart

March 27, 2018

1/43

QOutline

o topics:
o repetition
o for loops
o while loops
o Reading: Chapter 4 (section 4.10 to 4.16) of Objects First with
Java - A Practical Introduction using BlueJ, © David J. Barnes,
Michael Koélling

2/43

Review

o We often want to repeat some actions over and over
@ e.g. “do this action for each student in the university”
o typically we'll handle this with a “for-each” loop

o e.g. "do this action seventeen times"
o This is typically done using a for loop
o e.g. "do this action until this condition is true”

o The third paradigm is done using a while loop

for loops

for loops

4/43

for loops

Pseudocode for for loop

[Generalforn}oftheforloopJ

for(initialization; condition; post-body action) {
statements to be repeated

}

5/43

for loops

for loop structure

The header of the loop is the
information in the round brackets

A

r

\

for (<initialization>; <boolean-expression>; <post-body update>)

{
<statement-1>
<statement-2>

<statement-n>

}

The body of the loop is the collection
of statements in the curly brackets

6/43

for loops

Header — the initialization part

o The initialization part consists of any Java statement
o It is performed once only, when execution first reaches the for
loop

o It is normally used to initialize a counter variable
o (also known as “the index variable")

for loops

Header — the boolean-expression part

o The boolean expression controls whether or not the body of the
loop is executed

o The expression is evaluated immediately after initialization, and
at the start of every subsequent iteration

o If its value is true, then the statements in the body of the
loop are executed;
if its value is false, then the loop has finished and the

statements in the body are NOT executed
o When the loop finishes, execution continues at the first

statement after the for loop

for loops

Header — the post-body update

@ The post-body update is a Java statement that is executed
once each time the body of the for loop is executed

o It is executed immediately after the /ast statement of the body
has been executed

o It is usually used to update the counter variable

for loops

for loop flowchart

Initialization

Before loop After loop

No

Is the boolean
expression true?

Body
!

Post-body update

]

10/43

for loops

The for loop idiom

o for loops are quite general, but one common use is when we
want to do something a specific number of times.

11/43

for loops

The for loop idiom

o for loops are quite general, but one common use is when we
want to do something a specific number of times.

@ A typical idiom for doing that is code like the following:

for (int i=0; i<5; i=i+1) {
System.out.println(i);
}

11/43

for loops

The for loop idiom

o for loops are quite general, but one common use is when we
want to do something a specific number of times.

@ A typical idiom for doing that is code like the following:

for (int i=0; i<5; i=i+1) {
System.out.println(i);
}

o Output:
0

W N e

11/43

for loops

The for loop idiom — steps

How did this work?

Initialization creates i and sets it to 0

Check if i < 5, yes

Print out 1 — causes 0 to appear on terminal window
Update 1 from 0 to 1

Checkifi < 5, yes

Print out 1 — causes 1 to appear on terminal window
Update 1 from 1 to 2

Checkifi < 5,yes
Print out 1 — causes 2 to appear on terminal window
Update i from 2 to 3

First
iteration

Second
iteration

Check ifi < 5,yes
Print out 1 — causes 3 to appear on terminal window
Update 1 from 3 to 4
Check ifi < 5, yes
Print out 1 — causes 4 to appear on terminal window
Update i from 4 to 5
Checkifi < 5,NO

12/43

for loops

The increment operator

@ Something you may see in existing Java code

@ The post-body update often consists of just:
i= i+l

o Because it's so often used, there is a short-hand notation for
this operation —

o The statement i=i+1 may be replaced simply by i++ (often
pronounced “increment i)

for (int i=0; i<5; i++) {
System.out.println(i);
}

NB: Use either i=i+1 or i++, but don't try and mix the two

13/43

for loops

Braces

o If the body consists of only one statement, then you can leave

out the braces ...

@ However, it is better style to always include them

@ Serious security bugs have been caused by programmers
omitting them

14 /43

for loops

Braces (2)

for (int i=0; i<5; i++) {
System.out.println(i);
}

is the same as

for (int i=0; i<5; i++)
System.out.println(i);

15/43

for loops

Writing for loops

o What output do we expect to get from the following code?
for (int i=0; i<5; i++);
{

System.out.println(i*i);

}

16 /43

for loops

Writing for loops

o What output do we expect to get from the following code?
for (int i=0; i<5; i++);
{

System.out.println(i*i);

}

o Perhaps ...?

0
1
4
9
16

16 /43

for loops

Writing for loops

o What output do we expect to get from the following code?
for (int i=0; i<5; i++);
{

System.out.println(i*i);

}

o Perhaps ...?

0
1
4
9
16

@ In fact, the output is just
100

16 /43

for loops

For loop issues

o A common mistake when writing for loops is accidentally
including a surplus semicolon.
(this mistake can be very hard to track down)

@ The problem with the previous code was a problem with the
loop body

o We might have thought the body was

System.out.println(ixi);

but in fact it was

17/43

for loops

A common mistake

int 1i;

for (i=0; 1i<10; i++)E.\
{ The first loop has

System.out.println(i*i);

) an empty body
(just a single
semicolon!), while
int i; the second shows

for (i=0; 1i<10; i++) the “desired” body
{
System.out.println (i*i);

}

18/43

for loops

Another use for for loops — making tables

@ Another common use of for loops is to produce tables

@ Suppose you are asked to produce a temperature conversion
table listing the Fahrenheit equivalents of Celsius temperatures
from 0-100°C, going up in increments of 5°C

Celsius Farenheit

0 32
5 41
10 50
15 59
20 68

19/43

for loops

Making tables (cont'd)

A for loop is the solution:

int celsius;

int fahrenheit;

for (celsius=0; celsius <= 100; celsius = celsius + 5) {
fahrenheit = 32 + celsius*9/5;
System.out.print(celsius);
System.out.print (" ");
System.out.println(fahrenheit);

}

@ NB: we use System.out.print() instead of
System.out.println() when we want to print something without
starting a new line afterward

20/43

for loops

A numerical example — approximating 7

o A formula for the value of 7 is:

r=4x(3-3+1-14+%-.)

@ Suppose we wish to approximate 7 using this formula; here are
two approaches we might take

o Approximate 7 using a given number of terms from the above
formula (say, the first 10 terms)
o Approximate 7 to within a given accuracy (e.g., to within 0.01)

@ The first way is best done using a for loop

21/43

for loops

Approximating 7 using a given number of terms

Formula:

public double pi(int n) {
double approx_pi = 0;
double mult = 4; // mult. each term
/7 by #4 or —4
for (int i=0; i<n; i++) {
approx_pi = approx_pi + mult/(2%i+1);

mult = -mult; // "flip" multiplier

}

return approx_pi;

}

22 /43

for loops

Approximating 7 — variable values at top of loop

i mult 2*%i+1 approx
0 4.0 1 0.00
1 -4.0 3 4.00
2 4.0 5 2.67
3 -4.0 7 3.47
4 4.0 9 2.90
5 -4.0 11 3.34
6 4.0 13 2.98

I

Loop stops when i reaches the requested
value

23/43

for loops

for loops with bigger steps

// Print multiples of 3 up to 40
for(int num = 3; num < 40; num = num + 3) {
System.out.println(num) ;

}
Output:

3

6

9

12
15
18
21
24
27
30
33
36
39

24 /43

for loops

Review of for loops

Use them when:

@ the number of repetitions is known in advance
@ an index variable is required
o there is a regular step-size

But note:

o “For-each” loops have less scope for error than for loops
@ So: use a for-each loop unless you need access to indices or
step-size

25 /43

while loops

while loops

26 /43

while loops

Use of while loops

@ The repetition pattern embodied in while loops is:
“do this action until this condition is true"”
o We don't know in advance how many iterations there will be
o In Java, this is done with a while loop
@ We use a boolean condition to decide whether or not to keep

going

27 /43

while loops

while loop pseudocode

{General form of a while loop J

whilekeyword
boolean test
while(loop condition) {
loop body <—[Statements to be repeated}

}

Pseudo-code expression of
the actions of a while loop

while we wish to continue, do the things in the loop body

28 /43

while loops

while loop flowchart

Before loop After loop

No

Is the boolean
expression true?

Body

29 /43

while loops

Looking for your keys

while(the keys are missing) {
look in the next place

3

or equivalently:

while(not(the keys have been found)) {
look in the next place

3

30/43

while loops

Looking for your keys — Java code

boolean stillSearching = true;
Location place = firstPlace;
while(stillSearching) {
if(/* the keys are in place... */) {
stillSearching = false;
} else {
place = next(place);

31/43

while loops

7 to within a given accuracy

Another strategy for approximating 7:

@ approximate it to within a given accuracy (say, to within 0.001)

32/43

while loops

7 to within a given accuracy (cont'd)

public double pi(double accuracy) {

double approx = 0;

double mult = 4;

double denom 1;

while (Math.abs(mult/denom) > accuracy) { // use Math class
approx = approx + mult/denom;
mult -mult;
denom = denom + 2;

3

return approx;

33/43

while loops

Approximating 7 — values of variables at top of loop

Step denom mult/denom approx
0 1.0 4.00 0.00
1 3.0 1.33 4.00
2 5.0 0.80 2.67
3 7.0 -0.57 3.47
4 9.0 0.44 2.90
5 11.0 -0.36 3.34
6 13.0 0.31 2.98

Loop stops when the next term is smaller than accuracy

34/43

while loops

Features to note

o We have effectively declared an index variable
o (In this case, denom)
@ The index variable must be incremented explicitly
o It's not updated automatically in the header, as with the for
loop

@ The condition must be expressed correctly
o We must know that the loop will end

35/43

while loops

Exercise — searching a collection with while

o Recall the “book journal” class from previous lectures

o Let us write another taken on a search method: one which
searches for the first title containing a search string, and
returns the index of that item (or -1 if no such item is found)

36 /43

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk04-books-journal.html

while loops

Searching a collection (cont'd)

@ pseudocode

index = 0
stillSearching = true

while stillSearching &% index < bookTitles.size():
bookTitle = bookTitles.get (index)
if bookTitle contains searchString:
stillSearching = false // stop searching.
else:
index++

if stillSearching:
return -1 // We didn't find it.
else:
return index // Return where it was found.

37/43

while loops

Searching a collection (cont'd)

@ code: see http://teaching.csse.uwa.edu.au/units/CITS1001/
lectures/wk05-books-journal-search.html

38/43

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk05-books-journal-search.html
http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk05-books-journal-search.html

while loops

Questions

@ The loop's condition repearedly asks the bookTitles collection
how many
titles it is storing.

39/43

while loops

Questions

@ The loop's condition repearedly asks the bookTitles collection
how many
titles it is storing.

o Does the value returned by size() vary from one check to the
next?

39/43

while loops

Questions

@ The loop's condition repearedly asks the bookTitles collection
how many
titles it is storing.

o Does the value returned by size() vary from one check to the
next?

o If not — rewrite the method so the number of titles is stored
once in a variable, before the loop starts. Then use that
variable, rather than calling size().

39/43

while loops

Questions

@ The loop's condition repearedly asks the bookTitles collection
how many
titles it is storing.

o Does the value returned by size() vary from one check to the
next?

o If not — rewrite the method so the number of titles is stored
once in a variable, before the loop starts. Then use that
variable, rather than calling size().

o Can findFirst be implemented using the “search and return’
pattern we've seen previously? How do the two
implementations compare?

39/43

while loops

Questions (cont'd)

@ Does the code in findFirst work if the collection is empty?

40/43

while loops

for-each versus while

@ What are some of the advantages and drawbacks of using a
“for-each” loop, as opposed to a while loop?

41/43

while loops

for-each versus while (cont'd)

o for-each:
o Easier to write
o Safer: it is guaranteed to stop
o while:
o Easy to stop processing part-way through a collection
o Doesn't even have to be used with a collection
o Take care: could be an infinite loop
o Handy when you don’t know how many times a loop will be
repeated

42 /43

while loops

Exercises

o Write a while loop that prints out multiples of 5 between 10
and 95

@ Write a while loop to add up the values 1 to 10 and print the
sum once the loop has finished

43/43

	for loops
	while loops

