
for loops while loops

CITS1001 week 5
Repetition

Arran Stewart

March 27, 2018

1 / 43

for loops while loops

Outline

topics:
repetition
for loops
while loops

Reading: Chapter 4 (section 4.10 to 4.16) of Objects First with
Java - A Practical Introduction using BlueJ, © David J. Barnes,
Michael Kölling

2 / 43

for loops while loops

Review

We often want to repeat some actions over and over

e.g. “do this action for each student in the university”
typically we’ll handle this with a “for-each” loop

e.g. “do this action seventeen times”
This is typically done using a for loop

e.g. “do this action until this condition is true”
The third paradigm is done using a while loop

3 / 43

for loops while loops

for loops

4 / 43

for loops while loops

Pseudocode for for loop

for(initialization; condition; post-body action) {

statements to be repeated

}

General form of the for loop

5 / 43

for loops while loops

for loop structure

The body of the loop is the collection

of statements in the curly brackets

The header of the loop is the

information in the round brackets

for (<initialization>; <boolean-expression>; <post-body update>)

{

<statement-1>

<statement-2>

…

<statement-n>

}

6 / 43

for loops while loops

Header – the initialization part

The initialization part consists of any Java statement
It is performed once only, when execution first reaches the for
loop
It is normally used to initialize a counter variable

(also known as “the index variable”)

7 / 43

for loops while loops

Header – the boolean-expression part

The boolean expression controls whether or not the body of the
loop is executed
The expression is evaluated immediately after initialization, and
at the start of every subsequent iteration
If its value is true, then the statements in the body of the
loop are executed;
if its value is false, then the loop has finished and the
statements in the body are NOT executed

When the loop finishes, execution continues at the first
statement after the for loop

8 / 43

for loops while loops

Header – the post-body update

The post-body update is a Java statement that is executed
once each time the body of the for loop is executed
It is executed immediately after the last statement of the body
has been executed
It is usually used to update the counter variable

9 / 43

for loops while loops

for loop flowchart

Is the boolean

expression true?

Initialization

Body

Post-body update

No

Yes

Before loop After loop

10 / 43

for loops while loops

The for loop idiom

for loops are quite general, but one common use is when we
want to do something a specific number of times.

A typical idiom for doing that is code like the following:
for (int i=0; i<5; i=i+1) {

System.out.println(i);
}

Output:
0
1
2
3
4

11 / 43

for loops while loops

The for loop idiom

for loops are quite general, but one common use is when we
want to do something a specific number of times.

A typical idiom for doing that is code like the following:
for (int i=0; i<5; i=i+1) {

System.out.println(i);
}

Output:
0
1
2
3
4

11 / 43

for loops while loops

The for loop idiom

for loops are quite general, but one common use is when we
want to do something a specific number of times.

A typical idiom for doing that is code like the following:
for (int i=0; i<5; i=i+1) {

System.out.println(i);
}

Output:
0
1
2
3
4

11 / 43

for loops while loops

The for loop idiom – steps

How did this work?

First

iteration

Second

iteration

Initialization creates i and sets it to 0

Check if i < 5, yes

Print out i – causes 0 to appear on terminal window

Update i from 0 to 1

Check if i < 5, yes

Print out i – causes 1 to appear on terminal window

Update i from 1 to 2

Check if i < 5, yes

Print out i – causes 2 to appear on terminal window

Update i from 2 to 3

Check if i < 5, yes

Print out i – causes 3 to appear on terminal window

Update i from 3 to 4

Check if i < 5, yes

Print out i – causes 4 to appear on terminal window

Update i from 4 to 5

Check if i < 5, NO

12 / 43

for loops while loops

The increment operator

Something you may see in existing Java code

The post-body update often consists of just:
i = i+1;

Because it’s so often used, there is a short-hand notation for
this operation –

The statement i=i+1 may be replaced simply by i++ (often
pronounced “increment i”)
for (int i=0; i<5; i++) {

System.out.println(i);
}

NB: Use either i=i+1 or i++, but don’t try and mix the two
13 / 43

for loops while loops

Braces

If the body consists of only one statement, then you can leave
out the braces . . .
However, it is better style to always include them
Serious security bugs have been caused by programmers
omitting them

14 / 43

for loops while loops

Braces (2)

for (int i=0; i<5; i++) {
System.out.println(i);

}

is the same as
for (int i=0; i<5; i++)

System.out.println(i);

15 / 43

for loops while loops

Writing for loops
What output do we expect to get from the following code?
for (int i=0; i<5; i++);
{

System.out.println(i*i);
}

Perhaps . . . ?
0
1
4
9
16

In fact, the output is just
100

16 / 43

for loops while loops

Writing for loops
What output do we expect to get from the following code?
for (int i=0; i<5; i++);
{

System.out.println(i*i);
}

Perhaps . . . ?
0
1
4
9
16

In fact, the output is just
100

16 / 43

for loops while loops

Writing for loops
What output do we expect to get from the following code?
for (int i=0; i<5; i++);
{

System.out.println(i*i);
}

Perhaps . . . ?
0
1
4
9
16

In fact, the output is just
100

16 / 43

for loops while loops

For loop issues

A common mistake when writing for loops is accidentally
including a surplus semicolon.

(this mistake can be very hard to track down)

The problem with the previous code was a problem with the
loop body

We might have thought the body was
System.out.println(i*i);

but in fact it was
;

17 / 43

for loops while loops

A common mistake

The first loop has

an empty body

(just a single

semicolon!), while

the second shows

the “desired” body

int i;

for (i=0; i<10; i++) ;

{

System.out.println(i*i);

}

int i;

for (i=0; i<10; i++)

{

System.out.println(i*i);

}

18 / 43

for loops while loops

Another use for for loops – making tables

Another common use of for loops is to produce tables
Suppose you are asked to produce a temperature conversion
table listing the Fahrenheit equivalents of Celsius temperatures
from 0–100°C, going up in increments of 5°C

Celsius Farenheit
0 32
5 41
10 50
15 59
20 68
. . .

19 / 43

for loops while loops

Making tables (cont’d)

A for loop is the solution:
int celsius;
int fahrenheit;
for (celsius=0; celsius <= 100; celsius = celsius + 5) {

fahrenheit = 32 + celsius*9/5;
System.out.print(celsius);
System.out.print(" ");
System.out.println(fahrenheit);

}

NB: we use System.out.print() instead of
System.out.println() when we want to print something without
starting a new line afterward

20 / 43

for loops while loops

A numerical example – approximating π

A formula for the value of π is:

π = 4 × (1
1 − 1

3 + 1
5 − 1

7 + 1
9 − ...)

Suppose we wish to approximate π using this formula; here are
two approaches we might take

Approximate π using a given number of terms from the above
formula (say, the first 10 terms)
Approximate π to within a given accuracy (e.g., to within 0.01)

The first way is best done using a for loop

21 / 43

for loops while loops

Approximating π using a given number of terms

Formula:

π = 4 × (1
1 − 1

3 + 1
5 − 1

7 + 1
9 − ...)

Code:
public double pi(int n) {

double approx_pi = 0;
double mult = 4; // mult. each term

// by +4 or -4
for (int i=0; i<n; i++) {

approx_pi = approx_pi + mult/(2*i+1);
mult = -mult; // "flip" multiplier

}
return approx_pi;

}

22 / 43

for loops while loops

Approximating π – variable values at top of loop

i mult 2*i+1 approx

0 4.0 1 0.00

1 -4.0 3 4.00

2 4.0 5 2.67

3 -4.0 7 3.47

4 4.0 9 2.90

5 -4.0 11 3.34

6 4.0 13 2.98

Loop stops when i reaches the requested

value

23 / 43

for loops while loops

for loops with bigger steps
// Print multiples of 3 up to 40
for(int num = 3; num < 40; num = num + 3) {

System.out.println(num);
}

Output:
3
6
9
12
15
18
21
24
27
30
33
36
39

24 / 43

for loops while loops

Review of for loops

Use them when:

the number of repetitions is known in advance
an index variable is required
there is a regular step-size

But note:

“For-each” loops have less scope for error than for loops
So: use a for-each loop unless you need access to indices or
step-size

25 / 43

for loops while loops

while loops

26 / 43

for loops while loops

Use of while loops

The repetition pattern embodied in while loops is:
“do this action until this condition is true”

We don’t know in advance how many iterations there will be
In Java, this is done with a while loop
We use a boolean condition to decide whether or not to keep
going

27 / 43

for loops while loops

while loop pseudocode

while(loop condition) {

loop body

}

while we wish to continue, do the things in the loop body

boolean test

whilekeyword

Statements to be repeated

Pseudo-code expression of

the actions of a while loop

General form of a while loop

28 / 43

for loops while loops

while loop flowchart

Is the boolean

expression true?

Body

No

Yes

Before loop After loop

29 / 43

for loops while loops

Looking for your keys

while(the keys are missing) {
look in the next place

}
or equivalently:

while(not(the keys have been found)) {
look in the next place

}

30 / 43

for loops while loops

Looking for your keys – Java code

boolean stillSearching = true;
Location place = firstPlace;
while(stillSearching) {

if(/* the keys are in place... */) {
stillSearching = false;

} else {
place = next(place);

}

31 / 43

for loops while loops

π to within a given accuracy

Another strategy for approximating π:

approximate it to within a given accuracy (say, to within 0.001)

32 / 43

for loops while loops

π to within a given accuracy (cont’d)

public double pi(double accuracy) {
double approx = 0;
double mult = 4;
double denom = 1;
while (Math.abs(mult/denom) > accuracy) { // use Math class

approx = approx + mult/denom;
mult = -mult;
denom = denom + 2;

}
return approx;

33 / 43

for loops while loops

Approximating π – values of variables at top of loop

Step denom mult/denom approx

0 1.0 4.00 0.00

1 3.0 -1.33 4.00

2 5.0 0.80 2.67

3 7.0 -0.57 3.47

4 9.0 0.44 2.90

5 11.0 -0.36 3.34

6 13.0 0.31 2.98

Loop stops when the next term is smaller than accuracy

34 / 43

for loops while loops

Features to note

We have effectively declared an index variable
(In this case, denom)

The index variable must be incremented explicitly
It’s not updated automatically in the header, as with the for
loop

The condition must be expressed correctly
We must know that the loop will end

35 / 43

for loops while loops

Exercise – searching a collection with while

Recall the “book journal” class from previous lectures

Let us write another taken on a search method: one which
searches for the first title containing a search string, and
returns the index of that item (or -1 if no such item is found)

36 / 43

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk04-books-journal.html

for loops while loops

Searching a collection (cont’d)

pseudocode:
index = 0
stillSearching = true

while stillSearching && index < bookTitles.size():
bookTitle = bookTitles.get(index)
if bookTitle contains searchString:

stillSearching = false // stop searching.
else:

index++

if stillSearching:
return -1 // We didn't find it.

else:
return index // Return where it was found.

37 / 43

for loops while loops

Searching a collection (cont’d)

code: see http://teaching.csse.uwa.edu.au/units/CITS1001/
lectures/wk05-books-journal-search.html

38 / 43

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk05-books-journal-search.html
http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk05-books-journal-search.html

for loops while loops

Questions

The loop’s condition repearedly asks the bookTitles collection
how many
titles it is storing.

Does the value returned by size() vary from one check to the
next?
If not – rewrite the method so the number of titles is stored
once in a variable, before the loop starts. Then use that
variable, rather than calling size().

Can findFirst be implemented using the “search and return”
pattern we’ve seen previously? How do the two
implementations compare?

39 / 43

for loops while loops

Questions

The loop’s condition repearedly asks the bookTitles collection
how many
titles it is storing.

Does the value returned by size() vary from one check to the
next?

If not – rewrite the method so the number of titles is stored
once in a variable, before the loop starts. Then use that
variable, rather than calling size().

Can findFirst be implemented using the “search and return”
pattern we’ve seen previously? How do the two
implementations compare?

39 / 43

for loops while loops

Questions

The loop’s condition repearedly asks the bookTitles collection
how many
titles it is storing.

Does the value returned by size() vary from one check to the
next?
If not – rewrite the method so the number of titles is stored
once in a variable, before the loop starts. Then use that
variable, rather than calling size().

Can findFirst be implemented using the “search and return”
pattern we’ve seen previously? How do the two
implementations compare?

39 / 43

for loops while loops

Questions

The loop’s condition repearedly asks the bookTitles collection
how many
titles it is storing.

Does the value returned by size() vary from one check to the
next?
If not – rewrite the method so the number of titles is stored
once in a variable, before the loop starts. Then use that
variable, rather than calling size().

Can findFirst be implemented using the “search and return”
pattern we’ve seen previously? How do the two
implementations compare?

39 / 43

for loops while loops

Questions (cont’d)

Does the code in findFirst work if the collection is empty?

40 / 43

for loops while loops

for-each versus while

What are some of the advantages and drawbacks of using a
“for-each” loop, as opposed to a while loop?

41 / 43

for loops while loops

for-each versus while (cont’d)

for-each:
Easier to write
Safer: it is guaranteed to stop

while:
Easy to stop processing part-way through a collection
Doesn’t even have to be used with a collection
Take care: could be an infinite loop
Handy when you don’t know how many times a loop will be
repeated

42 / 43

for loops while loops

Exercises

Write a while loop that prints out multiples of 5 between 10
and 95
Write a while loop to add up the values 1 to 10 and print the
sum once the loop has finished

43 / 43

	for loops
	while loops

