
Iterators

CITS1001 week 4
Grouping objects – lecture 2

Arran Stewart

March 29, 2018

1 / 37

Iterators

Overview

Last lecture, we looked at how we can group objects together
into collections

We looked at the ArrayList class.
This lecture, we’ll look at doing something for each object in a
collection
And next lecture, we’ll look at more general ways of doing
things repeatedly

2 / 37

Iterators

Iteration

Often in programs, we want to repeat some action over and
over (usually with slight variations)

e.g. “do this action for each student in the university”
e.g. “do this action seventeen times”
e.g. “do this action to the file, until it is over 5MB in size”

Sometimes we know exactly how many times we want to do
the action, sometimes we just want to keep going until some
condition is met

3 / 37

Iterators

Iteration over collections

With collections, we often want to repeat things once, for every
object in the collection
The Java construct for doing this is the for-each loop.
We’ll see examples of other kinds of loop besides for-each
later (e.g. when you want to repeat something until a condition
becomes true)

Sometimes you could use different kinds of loop to achieve the
same result.
It’s best to choose the kind of loop that most simply and
directly expresses what you want.

4 / 37

Iterators

For-each loop pseudocode

for(ElementType element : collection) {

loop body

}

For each element in collection, do the things in the loop body.

loop header
forkeyword

Statement(s) to be repeated

Pseudo-code expression of the

actions of a for-each loop

General form of the for-each loop

5 / 37

Iterators

Example
The “book journal” class from last lecture let us print the title
of a book at a specific index:
public class BooksReadJournal {

private ArrayList<String> bookTitles;

// ...

/**
* Print the details of a book from the collection.
* @param index The index of the book whose details
* are to be printed.
*/

public void printBookTitle(int index) {

// ...

6 / 37

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk04-books-journal.html

Iterators

Example (cont’d)

We could add the ability to print the title of all books in the
journal – i.e., “for each book, print its title”

code:

/**
* List all book titles recorded in my book journal
*/
public void printAllTitles() {

for(String bookTitle : bookTitles) {
System.out.println(bookTitle);

}
}

7 / 37

Iterators

Example (cont’d)

We could add the ability to print the title of all books in the
journal – i.e., “for each book, print its title”

code:

/**
* List all book titles recorded in my book journal
*/
public void printAllTitles() {

for(String bookTitle : bookTitles) {
System.out.println(bookTitle);

}
}

7 / 37

Iterators

Exercise

Declare an ArrayList called cits1001 of Student objects.

Initialise cits1001 (i.e., create a new ArrayList object).

Implement a method, listAllStudentNames, that prints the
names of each student.

(You may assume whatever methods you need have been
implemented in the Student class.)

8 / 37

Iterators

More complex logic

A for-each loop iterates over every item in the collection – so what if
we only want to perform an action for some of them?
e.g. “for each student in the university, print their name if they are
taking French Studies 1 and Ancient Greek Language and Literature”

We can use an if statement, just as we did when validating
parameters.

Pseudocode:
for each student in university:

if (student takes French and student takes Ancient Greek):
print their name

9 / 37

Iterators

More complex logic

A for-each loop iterates over every item in the collection – so what if
we only want to perform an action for some of them?
e.g. “for each student in the university, print their name if they are
taking French Studies 1 and Ancient Greek Language and Literature”

We can use an if statement, just as we did when validating
parameters.

Pseudocode:
for each student in university:

if (student takes French and student takes Ancient Greek):
print their name

9 / 37

Iterators

More complex logic

A for-each loop iterates over every item in the collection – so what if
we only want to perform an action for some of them?
e.g. “for each student in the university, print their name if they are
taking French Studies 1 and Ancient Greek Language and Literature”

We can use an if statement, just as we did when validating
parameters.

Pseudocode:
for each student in university:

if (student takes French and student takes Ancient Greek):
print their name

9 / 37

Iterators

Example of selective processing

We could print only books whose title contains some search
string:

public void findBooks(String searchString) {
for(String bookTitle : bookTitle) {

if(bookTitle.contains(searchString)) {
System.out.println(bookTitle);

}
}

}

10 / 37

Iterators

Exercise – total marks

Assume we have a cits1001 object containing Students, and
that each student has a getMark() accessor method.

How can we calculate the total marks scored by the class?
Write a method for doing this.

11 / 37

Iterators

Exercise – average

Now that we have the total marks – how do we calculate the
average?

Is our code reliable? Are their situations where it may not
work? How should we handle those situations?

12 / 37

Iterators

Exercise – average

Now that we have the total marks – how do we calculate the
average?
Is our code reliable? Are their situations where it may not
work? How should we handle those situations?

12 / 37

Iterators

Search and return pattern

Often, we’ll want to look through a collection, looking for an
item that matches particular criteria, and return it if we find
one.

In pseudocode:

for each object in collection:
if object meets criteria:

return object
// if we are here, no object was found -
// do something else

13 / 37

Iterators

Search and return pattern in Java

Let’s create a findBook method which returns the first book (if any)
whose title contains a search string

public String findBook(String searchString) {
for (String bookTitle : bookTitles) {

if (bookTitle.contains(searchString)) {
return bookTitle; // return first match if found

}
}
// if we are here, no book contained the string
System.out.println("No matching book title found");
return null; //return null object

}

14 / 37

Iterators

Documenting our method

Note that we should write a comment for our method, saying what it
returns, so that programmers using our method know what to expect:

/** Search the journal for a book title containing
* searchString.
*
* If some book contains the search string, the
* first matching book is returned; otherwise,
* null is returned.
*/

public String findBook(String searchString) {
// ...

We will see a more formal way of doing this in future lectures.

15 / 37

Iterators

Documenting our method

Note that we should write a comment for our method, saying what it
returns, so that programmers using our method know what to expect:

/** Search the journal for a book title containing
* searchString.
*
* If some book contains the search string, the
* first matching book is returned; otherwise,
* null is returned.
*/

public String findBook(String searchString) {
// ...

We will see a more formal way of doing this in future lectures.

15 / 37

Iterators

Exercise - search and return

Write the signature for a method, findStudent, that will
search for a particular name in the cits1001 ArrayList and
return the Student object which has that name.

Now write the implementation of the method.
(Hint: how will we tell if a Student has the name we are
looking for?)
Challenge: If no Student objects have that name, we’d like to
print an error message – how can we do that?

16 / 37

Iterators

Exercise - search and return

Write the signature for a method, findStudent, that will
search for a particular name in the cits1001 ArrayList and
return the Student object which has that name.
Now write the implementation of the method.
(Hint: how will we tell if a Student has the name we are
looking for?)

Challenge: If no Student objects have that name, we’d like to
print an error message – how can we do that?

16 / 37

Iterators

Exercise - search and return

Write the signature for a method, findStudent, that will
search for a particular name in the cits1001 ArrayList and
return the Student object which has that name.
Now write the implementation of the method.
(Hint: how will we tell if a Student has the name we are
looking for?)
Challenge: If no Student objects have that name, we’d like to
print an error message – how can we do that?

16 / 37

Iterators

Pros and cons of for-each

Pros:
Simple to write
Don’t have to worry about termination conditions

Cons:
We can’t add or remove things from the collection

(What do you think will happen if we try?)

No access to the index for an element

(What if we wanted to print the position of each book, in the
journal?)

Only way we’ve seen to stop part-way through is return

17 / 37

Iterators

When to use a for-each loop

We want to perform some action on every item in a collection:
print every one
change every one
count every one

We don’t need access to the position index

We don’t need to add or remove things from the collection

18 / 37

Iterators

Other ways of processing a collection

What if we do want to remove something from the collection?
One way is to use a type of object called an iterator.

19 / 37

Iterators

Iterators

20 / 37

Iterators

How do we get an iterator?

All collections have a method called iterator() that will
gives us an Iterator object.
An iterator “points” to a particular spot in the collection

21 / 37

Iterators

What can it do?

An iterator lets us do 3 things:
see if there’s another item still to be processed
retrieve that item
remove that item from the collection

22 / 37

Iterators

Iterators are generic

Like an ArrayList, an Iterator is a generic or parametric
type

We can have an Iterator that iterates over Students, or
Integers, or any other type of object.

An ArrayList of Students would be ArrayList<Student>
– an Iterator over Students is Iterator<Student>

23 / 37

Iterators

Iterator methods

An Iterator has 3 methods:
boolean hasNext() – is there another item to process?
E next() – get the next item (where E represents the type of
item we’re getting)
void remove() – remove the last item we got, from the
collection.

24 / 37

Iterators

Object diagram of iteration

Suppose we have a list of some sort, called myList . . .
myList.iterator() will give us an Iterator object

:Element

myList:List

:Element :Element

:Iterator

myList.iterator()

:Element

25 / 37

Iterators

Object diagram cont’d

:Element

myList:List

:Element :Element

:Iterator

myList.iterator()

:Element

If we call hasNext(), the Iterator will return true,
confirming there is a first item we can retrieve
If we call next(), we’ll get the first item . . .

26 / 37

Iterators

Object diagram cont’d

Calling next():

:Element :Element :Element

:Iterator

hasNext()? ✔
next()

iterator.next();

:Element

myList:List

27 / 37

Iterators

Object diagram cont’d

And as soon as we’ve called next(), the Iterator will
change to point at the next object (if there is one).

:Element :Element :Element

iterator.next();

:Element

:Iterator

myList:List

28 / 37

Iterators

Object diagram cont’d

And so on – we can call hasNext() again to see that there is
a next object, and next() to retrieve it.

:Element :Element :Element:Element

:Iterator

myList:List

29 / 37

Iterators

Object diagram cont’d
And eventually, we’ll call next() and get a reference to the
last object, and the Iterator will point . . . beyond the last
object.

At that point, if we call hasNext(), the Iterator will return
false.

:Element :Element :Element:Element

:Iterator

myList:List

30 / 37

Iterators

Object diagram cont’d
And eventually, we’ll call next() and get a reference to the
last object, and the Iterator will point . . . beyond the last
object.
At that point, if we call hasNext(), the Iterator will return
false.

:Element :Element :Element:Element

:Iterator

myList:List

30 / 37

Iterators

Iterator code

What does the code for this look like?

Code for just accessing the first element:

Iterator<Element> myIter = myList.iterator();
if (myIter.hasNext()) {

Element elem = myIter.next();
// ... do something with the Element

}

31 / 37

Iterators

Iteration in a loop

If we want to use an iterator to access all the items in a
collection, we’ll need a while loop – more on this next week.

Code to loop over the list:

Iterator<Element> myIter = myList.iterator();
while (myIter.hasNext()) {

Element elem = myIter.next();
// ... do something with the Element

}

32 / 37

Iterators

Iterating over the book journal

We can use iterators to loop over titles in our book journal.
The following code prints all titles (which we have done before,
using a for-each loop):

public void printBookTitles() {
Iterator<String> iter = bookTitles.iterator();
while (iter.hasNext()) {

String title = iter.next();
System.out.println(title);

}
}

33 / 37

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk04-books-journal.html

Iterators

Iterating over the book journal (2)
But we can also safely remove items from our collection:

/** delete titles that match a search string */
public void deleteTitles(String searchString) {

Iterator<String> iter = bookTitles.iterator();
while (iter.hasNext()) {

String title = iter.next();
if (title.contains(searchString)) {

iter.remove();
}

}
}

If the journal contains multiple books with titles containing the
search string – how many would be removed? Just the first
one? Or all of them?

34 / 37

Iterators

Iterating over other sorts of collections

The only sort of collection we have dealt with so far is the
ArrayList.
Our book journal class stores book titles in an ArrayList,
which means that the collection of books is ordered – each
book has a position in the list.
We will see other sorts of collection soon which are not ordered
– iterators work perfectly well with those, too

35 / 37

Iterators

Index vs iterator

Ways to iterate over a collection:

for-each loop.
Use if we want to process every element.

while loop.
Use if we might want to stop part way through.
Use for repetition that doesn’t involve a collection.

Iterator object.
Use if we might want to stop part way through.
Often used with collections where indexed access is not very
efficient, or impossible.
Use to remove from a collection.

36 / 37

Iterators

Exercises

Suppose we have an ArrayList of Student objects, called
cits1001. Each student has a getMark() method.

Identify what sort of loops would be best for performing the
following tasks, and write them:

print the names and marks of all students
print the names and marks of every second student
print the names and marks of all students with a mark above 50
delete a student with the name “Adam Smith”

Suppose we want to process our ArrayList, and return a list
of students with marks above 50 – how would we do that?

37 / 37

	Iterators

