CITS1001 week 4
Grouping objects — lecture 2

Arran Stewart

March 29, 2018

1/37

Overview

o Last lecture, we looked at how we can group objects together

into collections
o We looked at the ArrayList class.

@ This lecture, we'll look at doing something for each object in a
collection

@ And next lecture, we'll look at more general ways of doing
things repeatedly

[teration

o Often in programs, we want to repeat some action over and
over (usually with slight variations)

o e.g. "do this action for each student in the university”
o e.g. "do this action seventeen times"
o e.g. "do this action to the file, until it is over 5SMB in size"

@ Sometimes we know exactly how many times we want to do
the action, sometimes we just want to keep going until some
condition is met

[teration over collections

o With collections, we often want to repeat things once, for every
object in the collection

@ The Java construct for doing this is the for-each loop.

o We'll see examples of other kinds of loop besides for-each
later (e.g. when you want to repeat something until a condition
becomes true)

o Sometimes you could use different kinds of loop to achieve the
same result.

o It's best to choose the kind of loop that most simply and
directly expresses what you want.

For-each loop pseudocode

[General form of the for-each loop]

forkeyword
po—
for(ElementType element : collection) {
loop body
} Statement(s) to be repeated}

Pseudo-code expression of the
actions of a for-each loop

For each element in collection, do the things in the loop body.

5/37

Example

@ The “book journal” class from last lecture let us print the title
of a book at a specific index:

public class BooksReadJournal {
private ArrayList<String> bookTitles;
/e

/**
* Print the details of a book from the collection.
* Oparam index The indexr of the book whose details
* are to be printed.

*/
public void printBookTitle(int index) {

/.

6/37

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk04-books-journal.html

Example (cont'd)

@ We could add the ability to print the title of all books in the
journal —i.e., “for each book, print its title"

7/37

Example (cont'd)

@ We could add the ability to print the title of all books in the
journal —i.e., “for each book, print its title"

o code:

/%%
* List all book titles recorded in my book journal
*/
public void printAl1Titles() {
for(String bookTitle : bookTitles) {

System.out.println(bookTitle) ;
}
}

/37

Exercise

o Declare an ArrayList called cits1001 of Student objects.
o Initialise cits1001 (i.e., create a new ArrayList object).

@ Implement a method, 1istAllStudentNames, that prints the
names of each student.

(You may assume whatever methods you need have been
implemented in the Student class.)

More complex logic

@ A for-each loop iterates over every item in the collection — so what if
we only want to perform an action for some of them?
e.g. “for each student in the university, print their name if they are
taking French Studies 1 and Ancient Greek Language and Literature”

More complex logic

@ A for-each loop iterates over every item in the collection — so what if
we only want to perform an action for some of them?

e.g. “for each student in the university, print their name if they are
taking French Studies 1 and Ancient Greek Language and Literature”

@ We can use an if statement, just as we did when validating
parameters.

More complex logic

@ A for-each loop iterates over every item in the collection — so what if
we only want to perform an action for some of them?
e.g. “for each student in the university, print their name if they are
taking French Studies 1 and Ancient Greek Language and Literature”

@ We can use an if statement, just as we did when validating
parameters.

@ Pseudocode:

for each student in university:
if (student takes French and student takes Ancient Greek):
print their name

Example of selective processing

@ We could print only books whose title contains some search
string:

public void findBooks(String searchString) {
for(String bookTitle : bookTitle) {
if (bookTitle.contains(searchString)) {
System.out.println(bookTitle) ;
}
}
}

10/37

Exercise — total marks

o Assume we have a cits1001 object containing Students, and
that each student has a getMark() accessor method.

How can we calculate the total marks scored by the class?
Write a method for doing this.

11/37

Exercise — average

@ Now that we have the total marks — how do we calculate the
average?

12 /37

Exercise — average

@ Now that we have the total marks — how do we calculate the

average?
o Is our code reliable? Are their situations where it may not

work? How should we handle those situations?

12 /37

Search and return pattern

o Often, we'll want to look through a collection, looking for an
item that matches particular criteria, and return it if we find
one.

@ In pseudocode:

for each object in collection:
if object meets criteria:
return object
// if we are here, no object was found -
// do something else

13/37

Search and return pattern in Java

o Let's create a findBook method which returns the first book (if any)
whose title contains a search string

public String findBook(String searchString) {
for (String bookTitle : bookTitles) {
if (bookTitle.contains(searchString)) {
return bookTitle; // return first match if found
}
}
// if we are here, no book contained the string
System.out.println("No matching book title found");
return null; //return null object

14 /37

Documenting our method

@ Note that we should write a comment for our method, saying what it
returns, so that programmers using our method know what to expect:

/** Search the journal for a book title containing
* searchString.

If some book contains the search string, the
first matching book is returned; otherwise,
null 1s returned.

* %X X %

*/
public String findBook(String searchString) {
/.

15/37

Documenting our method

@ Note that we should write a comment for our method, saying what it
returns, so that programmers using our method know what to expect:

/** Search the journal for a book title containing
* searchString.

If some book contains the search string, the
first matching book is returned; otherwise,
null 1s returned.

* %X X %

*/
public String findBook(String searchString) {
/.

@ We will see a more formal way of doing this in future lectures.

15/37

Exercise - search and return

o Write the signature for a method, findStudent, that will
search for a particular name in the cits1001 ArrayList and
return the Student object which has that name.

16 /37

Exercise - search and return

o Write the signature for a method, findStudent, that will
search for a particular name in the cits1001 ArrayList and
return the Student object which has that name.

o Now write the implementation of the method.

(Hint: how will we tell if a Student has the name we are
looking for?)

16 /37

Exercise - search and return

o Write the signature for a method, findStudent, that will
search for a particular name in the cits1001 ArrayList and
return the Student object which has that name.

o Now write the implementation of the method.

(Hint: how will we tell if a Student has the name we are
looking for?)

o Challenge: If no Student objects have that name, we'd like to
print an error message — how can we do that?

16 /37

Pros and cons of for-each

o Pros:

o Simple to write
o Don't have to worry about termination conditions

o Cons:
o We can't add or remove things from the collection
(What do you think will happen if we try?)
o No access to the index for an element

(What if we wanted to print the position of each book, in the
journal?)

o Only way we've seen to stop part-way through is return

17/37

When to use a for-each loop

o We want to perform some action on every item in a collection:

o print every one
o change every one
@ count every one

o We don't need access to the position index

@ We don't need to add or remove things from the collection

18/37

Other ways of processing a collection

o What if we do want to remove something from the collection?
@ One way is to use a type of object called an iterator.

19/37

Iterators

20/37

Iterators

How do we get an iterator?

o All collections have a method called iterator () that will
gives us an lterator object.
o An iterator “points” to a particular spot in the collection

21/37

Iterators

What can it do?

o An iterator lets us do 3 things:

o see if there's another item still to be processed
o retrieve that item
o remove that item from the collection

22/37

Iterators

lterators are generic

o Like an ArrayList, an Iterator is a generic or parametric
type

o We can have an Iterator that iterates over Students, or
Integers, or any other type of object.

o An ArrayList of Students would be ArrayList<Student>
— an Iterator over Students is Iterator<Student>

23/37

Iterators

[terator methods

@ An Iterator has 3 methods:

o boolean hasNext() — is there another item to process?

o E next() — get the next item (where E represents the type of
item we're getting)

o void remove() — remove the last item we got, from the
collection.

24/37

Iterators

Object diagram of iteration

@ Suppose we have a list of some sort, called myList ...
o myList.iterator() will give us an Iterator object

myList.iterator()

:Element :Element :Element :Element

25/37

Iterators

Object diagram cont'd

myList.iterator()

:Element :Element :Element :Element

o If we call hasNext (), the Iterator will return true,
confirming there is a first item we can retrieve
o If we call next (), we'll get the first item ...

26 /37

Iterators

Object diagram cont'd

o Calling next ():

:Element :Element :Element :Element

hasNext()? v
next()

iterator.next();

27/37

Iterators

Object diagram cont'd

o And as soon as we've called next (), the Iterator will
change to point at the next object (if there is one).

:Element :Element :Element :Element

:Iterator

iterator.next();

28/37

Iterators

Object diagram cont'd

@ And so on — we can call hasNext () again to see that there is
a next object, and next () to retrieve it.

:Element :Element :Element

:Iterator

29/37

Iterators

Object diagram cont'd

o And eventually, we'll call next () and get a reference to the
last object, and the Iterator will point ... beyond the last
object.

:Element :Element :Element

30/37

Iterators

Object diagram cont'd

o And eventually, we'll call next () and get a reference to the
last object, and the Iterator will point ... beyond the last
object.

o At that point, if we call hasNext (), the Iterator will return
false.

:Element :Element :Element

30/37

Iterators

Iterator code

@ What does the code for this look like?
o Code for just accessing the first element:

Iterator<Element> myIter = myList.iterator();
if (myIter.hasNext()) {

Element elem = mylter.next();

// ... do something with the Element

31/37

Iterators

Iteration in a loop

o If we want to use an iterator to access all the items in a

collection, we'll need a while loop — more on this next week.

o Code to loop over the list:

Iterator<Element> myIter = myList.iterator();
while (myIter.hasNext()) {

Element elem = myIter.next();

// ... do something with the Element
}

32/37

Iterators

lterating over the book journal

@ We can use iterators to loop over titles in our book journal.
@ The following code prints all titles (which we have done before,
using a for-each loop):

public void printBookTitles() {
Iterator<String> iter = bookTitles.iterator();
while (iter.hasNext()) {
String title = iter.next();
System.out.println(title);
}
}

33/37

http://teaching.csse.uwa.edu.au/units/CITS1001/lectures/wk04-books-journal.html

Iterators

lterating over the book journal (2)

o But we can also safely remove items from our collection:

/*% delete titles that match a search string */
public void deleteTitles(String searchString) {
Iterator<String> iter = bookTitles.iterator();
while (iter.hasNext()) {
String title = iter.next();
if (title.contains(searchString)) {
iter.remove();
}
}
}

o If the journal contains multiple books with titles containing the
search string — how many would be removed? Just the first

one? Or all of them?
34/37

Iterators

lterating over other sorts of collections

@ The only sort of collection we have dealt with so far is the

ArrayList.
@ Our book journal class stores book titles in an ArrayList,
which means that the collection of books is ordered — each

book has a position in the list.
o We will see other sorts of collection soon which are not ordered

— iterators work perfectly well with those, too

35/37

Iterators

Index vs iterator

Ways to iterate over a collection:

o for-each loop.
o Use if we want to process every element.
o while loop.
o Use if we might want to stop part way through.
o Use for repetition that doesn't involve a collection.
o lterator object.
o Use if we might want to stop part way through.
o Often used with collections where indexed access is not very
efficient, or impossible.
o Use to remove from a collection.

36/37

Iterators

Exercises

@ Suppose we have an ArrayList of Student objects, called
cits1001. Each student has a getMark() method.

o Identify what sort of loops would be best for performing the
following tasks, and write them:

print the names and marks of all students

print the names and marks of every second student

print the names and marks of all students with a mark above 50
delete a student with the name “Adam Smith"

© 6 o o

@ Suppose we want to process our ArrayList, and return a list
of students with marks above 50 — how would we do that?

37/37

	Iterators

