CITS1001 week 3
Object interaction

Arran Stewart

March 12, 2018

1/41

Overview

@ In this lecture, we look at more advanced concepts relating to
objects, classes, and the way objects interact.

2/41

Fundamental concepts

@ Coupling and cohesion

o Internal/external method calls

@ null objects

@ Chaining method calls

o Class constants

o Class variables

Reading: Chapter 3 of Objects First with Java — A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kolling

Modelling a clock

Modelling a clock

4/41

Modelling a clock

A digital clock

11:03

/41

Modelling a clock

Modularization

o Modularization is the process of dividing a whole into
well-defined parts, which can be built and examined separately,
and which interact in well-defined ways

6/41

Modelling a clock

Abstraction

o Abstraction is the ability to ignore details of the parts of a
problem, to focus attention on its higher levels

7/41

Modelling a clock

Modularizing the clock display

11:03

One 4-digit display?
Or two 2-digit displays?

11103

Modelling a clock

Implementation - NumberDisplay

public class NumberDisplay {
private int limit;
private int value;

// Constructor and methods omitted.
/S
}

(Full listing at http://teaching.csse.uwa.edu.au/units/CITS1001/
code-listings/wk03-number.html)

9/41

http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-number.html
http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-number.html

Modelling a clock

Implementation - ClockDisplay

public class ClockDisplay {
private NumberDisplay hours;
private NumberDisplay minutes;

// Constructor and methods omitted.
/S
}

(Full listing at http://teaching.csse.uwa.edu.au/units/CITS1001/
code-listings/wk03-clock.html)

10/41

http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-clock.html
http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-clock.html

Modelling a clock

Objects in the running program

e Dynamic view at runtime (when the system is running)
11/41

Modelling a clock

Objects in the running program (2)

o Objects exist at run-time

o An object diagram shows the objects and their relationships at
one moment in time during the execution of an application

o It gives information about objects at runtime and presents the
dynamic view of a program

12/41

Modelling a clock

Class diagram

ClockDisplay

NumberDisplay

ClockDisplay depends on NumberDisplay
ClockDisplay makes use of NumberDisplay

13/41

Modelling a clock

Classes define types

private NumberDisplay hours;
@ A class name can be used as the type for a variable

o Variables that have a class as their type can store objects
belonging to that class

14 /41

Modelling a clock

Class diagram (2)

o Classes exist at compile time
@ The class diagram shows the classes of an application and the
relationships between them

o It gives information about the source code and presents the
static view of a program

15/41

Classes as types

Classes as types

16 /41

Classes as types

Primitive types vs. object types

SomeObject obj; object type

— |

int i;

5 primitive type

17 /41

Classes as types

Primitive types vs. object types

ObjectType a; ObjectType b;
\
b = a;
int a; int b;

32 32

18/41

Classes as types

Quiz: What is the output?

int a; Person a;

int b; Person b;

a = 32; a = new Person("Everett");
b = a; b = a;

a=a+ 1; a.changeName ("Delmar") ;

System.out.println(b); System.out.println(b.getName());

19/41

Interlude — some useful operators for building our clock

Interlude — some useful operators for building

our clock

20/ 41

Interlude — some useful operators for building our clock

The modulo operator

@ The ‘division’ operator (/), when applied to int operands,
returns the result of an integer division.

o The ‘modulo’ operator (%) returns the remainder of an integer
division.
o E.g., generally:
17 / 5 gives result 3, remainder 2

In Java:
17 / 5 == 3
17 % 5 == 2

21/41

Interlude — some useful operators for building our clock

@ What is the result of the expression
8 % 3

o For integer n >= 0, what are all possible results of:
n'%b5

@ Can n be negative?

22/41

Back to the clock

Back to the clock

23/41

Back to the clock

Source code: NumberDisplay

public NumberDisplay(int rollOverLimit) {
limit roll0OverLimit;
value = 0;

public void increment() {
value = (value + 1) % limit;

}

24 /41

Back to the clock

Objects creating objects

Consider the constructor for the ClockDisplay class:

public class ClockDisplay {
private NumberDisplay hours;
private NumberDisplay minutes;
private String displayString;

public ClockDisplay() {
hours = new NumberDisplay(24);
minutes = new NumberDisplay(60);

/e

25 /41

Back to the clock

Objects creating objects

@ In class ClockDisplay:
hours = new NumberDisplay(24);
(actual parameter)

@ In class NumberDisplay:
public NumberDisplay(int rollOverLimit);
(formal parameter)

26 /41

ClockDisplay object diagram

Back to the clock

Method calling

public void timeTick() {
minutes.increment();
if (minutes.getValue() == 0) {
// it just rolled over!
hours.increment();
}
updateDisplay();

28 /41

Back to the clock

External method calls

o For calling a method on another object
o external method call example:
minutes.increment();
where signature of increment is:
public void increment ()
o general form is:
object . methodName (parameter-list)
o If increment() had been a private method we would not have
been able to invoke it.

29 /41

Back to the clock

Internal method calls

o For calling a method on our own object.
o Why would we want to do that?

30/41

Back to the clock

Internal method calls (2)

o internal method call example:
updateDisplay();
@ No variable name is required.

31/41

Back to the clock

Internal method (helpers)

The updateDisplay method of ClockDisplay:

/**
* Update the internal stiring that
* represents the display.
*/
private void updateDisplay() {
displayString =
hours.getDisplayValue() + ":" +
minutes.getDisplayValue();

32/41

Back to the clock

Method calls

o NB: A method call on another object of the same type would
be an external call.

o ‘Internal’ means ‘this object’, ‘ourselves’.

o ‘External’ means ‘any other object’, regardless of its type.

33/41

Back to the clock

@ null is a special Object in Java
o All Object variables (of any class) are initially null

o Variables can be tested for whether they are null

private NumberDisplay hours;
if (hours != null) {

//... nothing to show
} else {

// ... display the hours
}

@ Variables can be given the value null - losing the reference to
anything they were previously holding.

public void forgetHours() {
hours = null;

}

34 /41

Back to the clock

Anonymous objects

o Objects are often created and handed on elsewhere
immediately:

Lot furtherLot = new Lot(...);
lots.add(furtherLot) ;

o We don't really need furtherLot:

lots.add(new Lot(...));

35/41

Back to the clock

Chaining method calls

o Methods often return objects.

o We often immediately call a method on the returned object.
Bid bid = lot.getHighestBid();
Person bidder = bid.getBidder();

o We can use the anonymous object concept and chain method
calls:

lot.getHighestBid () .getBidder ()

36 /41

Back to the clock

Chaining method calls (2)

o Each method in the chain is called on the object returned from
the previous method call in the chain.

String name =
lot.getHighestBid () .getBidder () .getName () ;

!

[Returns a Bid object from the Lot }

[Returns a Person object from the Bid }

[Returns a String object from the Person }

37/41

Back to the clock

Concept summary

o object creation

o overloading

o internal/external method calls
o debugger

38/41

Back to the clock

Review (1)

o Abstraction
o ignore some details to focus attention on a higher level of a
problem
o Modularisation
o Divide a whole into well defined parts that can be built
separately and that interact in well-defined ways
o Classes define types
o A class name can be used as the type for a variable. Variables
that have a class as their type can store objects of that class.

39/41

Back to the clock

Review (2)

(+]

Object diagram
o Shows the objects and their relationships at one moment during
the execution of an application
Object references
o Variables of object types store references to objects
Primitive type
o The primitive types of Java are non-object types. The most
common primitive types are int, boolean, char, double and long.
Object creation
o Objects can create other objects using the new operator

(]

(]

(]

40/41

Back to the clock

Review (3)

o Internal method call
o Methods can call other methods of the same class.
o External method call
o Methods can call methods of other objects using dot notation

41/41

	Modelling a clock
	Classes as types
	Interlude – some useful operators for building our clock
	Back to the clock

