
Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

CITS1001 week 3
Object interaction

Arran Stewart

March 12, 2018

1 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Overview

In this lecture, we look at more advanced concepts relating to
objects, classes, and the way objects interact.

2 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Fundamental concepts

Coupling and cohesion
Internal/external method calls
null objects
Chaining method calls
Class constants
Class variables

Reading: Chapter 3 of Objects First with Java – A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling

3 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Modelling a clock

4 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

A digital clock

5 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Modularization

Modularization is the process of dividing a whole into
well-defined parts, which can be built and examined separately,
and which interact in well-defined ways

6 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Abstraction

Abstraction is the ability to ignore details of the parts of a
problem, to focus attention on its higher levels

7 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Modularizing the clock display

One 4-digit display?
Or two 2-digit displays?

8 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Implementation - NumberDisplay

public class NumberDisplay {
private int limit;
private int value;

// Constructor and methods omitted.
// ...

}

(Full listing at http://teaching.csse.uwa.edu.au/units/CITS1001/
code-listings/wk03-number.html)

9 / 41

http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-number.html
http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-number.html

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Implementation - ClockDisplay

public class ClockDisplay {
private NumberDisplay hours;
private NumberDisplay minutes;

// Constructor and methods omitted.
// ...

}

(Full listing at http://teaching.csse.uwa.edu.au/units/CITS1001/
code-listings/wk03-clock.html)

10 / 41

http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-clock.html
http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk03-clock.html

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Objects in the running program

Dynamic view at runtime (when the system is running)
11 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Objects in the running program (2)

Objects exist at run-time
An object diagram shows the objects and their relationships at
one moment in time during the execution of an application
It gives information about objects at runtime and presents the
dynamic view of a program

12 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Class diagram

ClockDisplay depends on NumberDisplay
ClockDisplay makes use of NumberDisplay

13 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Classes define types

private NumberDisplay hours;

A class name can be used as the type for a variable
Variables that have a class as their type can store objects
belonging to that class

14 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Class diagram (2)

Classes exist at compile time
The class diagram shows the classes of an application and the
relationships between them
It gives information about the source code and presents the
static view of a program

15 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Classes as types

16 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Primitive types vs. object types

32

object

object type

primitive type

SomeObject obj;

int i;

17 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Primitive types vs. object types

32

ObjectType a;

int a;

ObjectType b;

32

int b;

b = a;

18 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Quiz: What is the output?

int a;
int b;
a = 32;
b = a;
a = a + 1;
System.out.println(b);

Person a;
Person b;
a = new Person("Everett");
b = a;
a.changeName("Delmar");
System.out.println(b.getName());

19 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Interlude – some useful operators for building
our clock

20 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

The modulo operator

The ‘division’ operator (/), when applied to int operands,
returns the result of an integer division.

The ‘modulo’ operator (%) returns the remainder of an integer
division.

E.g., generally:
17 / 5 gives result 3, remainder 2

In Java:
17 / 5 == 3
17 % 5 == 2

21 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Quiz

What is the result of the expression
8 % 3
For integer n >= 0, what are all possible results of:
n % 5
Can n be negative?

22 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Back to the clock

23 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Source code: NumberDisplay

public NumberDisplay(int rollOverLimit) {
limit = rollOverLimit;
value = 0;

}

public void increment() {
value = (value + 1) % limit;

}

24 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Objects creating objects

Consider the constructor for the ClockDisplay class:
public class ClockDisplay {

private NumberDisplay hours;
private NumberDisplay minutes;
private String displayString;

public ClockDisplay() {
hours = new NumberDisplay(24);
minutes = new NumberDisplay(60);
// ...

}
}

25 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Objects creating objects

In class ClockDisplay:
hours = new NumberDisplay(24);

(actual parameter)

In class NumberDisplay:
public NumberDisplay(int rollOverLimit);

(formal parameter)

26 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

ClockDisplay object diagram

27 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Method calling

public void timeTick() {
minutes.increment();
if(minutes.getValue() == 0) {

// it just rolled over!
hours.increment();

}
updateDisplay();

}

28 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

External method calls

For calling a method on another object
external method call example:

minutes.increment();
where signature of increment is:

public void increment()
general form is:

object . methodName (parameter-list)
If increment() had been a private method we would not have
been able to invoke it.

29 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Internal method calls

For calling a method on our own object.
Why would we want to do that?

30 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Internal method calls (2)

internal method call example:
updateDisplay();

No variable name is required.

31 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Internal method (helpers)

The updateDisplay method of ClockDisplay:
/**
* Update the internal string that
* represents the display.
*/

private void updateDisplay() {
displayString =

hours.getDisplayValue() + ":" +
minutes.getDisplayValue();

}

32 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Method calls

NB: A method call on another object of the same type would
be an external call.
‘Internal’ means ‘this object’, ‘ourselves’.
‘External’ means ‘any other object’, regardless of its type.

33 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

null

null is a special Object in Java
All Object variables (of any class) are initially null
Variables can be tested for whether they are null

private NumberDisplay hours;
if(hours != null) {

//... nothing to show
} else {

// ... display the hours
}

Variables can be given the value null - losing the reference to
anything they were previously holding.

public void forgetHours() {
hours = null;

}

34 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Anonymous objects

Objects are often created and handed on elsewhere
immediately:
Lot furtherLot = new Lot(...);
lots.add(furtherLot);

We don’t really need furtherLot:
lots.add(new Lot(...));

35 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Chaining method calls

Methods often return objects.

We often immediately call a method on the returned object.
Bid bid = lot.getHighestBid();
Person bidder = bid.getBidder();

We can use the anonymous object concept and chain method
calls:
lot.getHighestBid().getBidder()

36 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Chaining method calls (2)

Each method in the chain is called on the object returned from
the previous method call in the chain.

String name =

 lot.getHighestBid().getBidder().getName();

Returns a Bid object from the Lot

Returns a Person object from the Bid

Returns a String object from the Person

37 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Concept summary

object creation
overloading
internal/external method calls
debugger

38 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Review (1)

Abstraction
ignore some details to focus attention on a higher level of a
problem

Modularisation
Divide a whole into well defined parts that can be built
separately and that interact in well-defined ways

Classes define types
A class name can be used as the type for a variable. Variables
that have a class as their type can store objects of that class.

39 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Review (2)

Object diagram
Shows the objects and their relationships at one moment during
the execution of an application

Object references
Variables of object types store references to objects

Primitive type
The primitive types of Java are non-object types. The most
common primitive types are int, boolean, char, double and long.

Object creation
Objects can create other objects using the new operator

40 / 41

Modelling a clock Classes as types Interlude – some useful operators for building our clock Back to the clock

Review (3)

Internal method call
Methods can call other methods of the same class.

External method call
Methods can call methods of other objects using dot notation

41 / 41

	Modelling a clock
	Classes as types
	Interlude – some useful operators for building our clock
	Back to the clock

