
Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

CITS1001 week 2
Class definitions

Arran Stewart

March 6, 2018

1 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Week 1 revision

2 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Revision of concepts from week 1

After studying the lectures, lab and reading Chapter 1, you should
be familiar with the concepts of class, object, state and method

3 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

1. Objects are created by classes

4 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

2. Object state is represented by fields

5 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

3. Objects (usually) do something when we invoke a
method

Methods can be
thought of as requests
we make of an object

6 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Week 2 - Looking inside classes

7 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Concepts (1)

This week we will learn to understand class definitions by looking
inside Java classes.

fields
constructors
comments

Reading: Chapter 2 of Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling

8 / 71

Concepts (1)

This week we will learn to understand class definitions by looking
inside Java classes.

fields
constructors
comments

Reading: Chapter 2 of Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

Concepts (1)

• okay - first, a recap of classes

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects

A class is a group of objects that have similar characteristics
and that exhibit similar behaviour
An object is a specific instance of a class

Classes represent all objects of a certain kind
e.g. Car, Lecturer, Student

Objects represent ‘things’ from the real world, or from some
problem domain

e.g. the red car down there in the car park
e.g. the lecturer talking to you now

9 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:

The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.
This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:

When we start up a program, no objects exist
The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:
The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.

This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:

When we start up a program, no objects exist
The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:
The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.
This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:

When we start up a program, no objects exist
The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:
The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.
This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:

When we start up a program, no objects exist
The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:
The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.
This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:
When we start up a program, no objects exist

The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:
The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.
This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:
When we start up a program, no objects exist
The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Classes vs. objects (2)

Classes are like a “blueprint” or design for a set of objects:
The source code we write in Java describes what sort of state
and behaviour the objects of a class will have.
This blueprint or design exists even before any objects have
been made.

Objects are said to exist at “run-time”:
When we start up a program, no objects exist
The program creates objects as it runs, and methods of those
objects are invoked to enact the behaviour of the program

This relationship is illustrated in this week’s lab sheet

10 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Why do we use classes?

To reduce complexity
If we have many objects, all of which are constructed in a
similar way, is it better to have one design that describes them
all, or for each to be tailor-made?

Often, we know how to deal with an object based purely on
knowing its class, without knowing anything specifically about
that particular instance
For example, if we encounter a dog – i.e. an instance of the
class Dog – we already have a basic understanding of how to
deal with it, even if we have never previously met that
particular dog

We know that it might bark, or bite, or wag its tail, based
purely on knowing that it is a Dog
Barking, biting, and tail-wagging are best viewed as features of
the class Dog, not of any individual dog

11 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Source code

In Java, classes are defined by text files of source code
Source code is designed to be both

human readable, and
machine readable

Source code must specify every detail about how objects
belonging to a class behave

Computers are very fast but also very literal
In this lecture we will use as a running example the following
code listing on the CITS1001 site:

TicketMachine.java

12 / 71

http://teaching.csse.uwa.edu.au/units/CITS1001/code-listings/wk02-ticket-machine.html

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

An important point about program code

Program code is designed to be human readable
Familiar words are used for programming constructs
(if, else, while, repeat, for)
Indented format is similar to paragraphs and sections in text
Meaningful variable names suggest what they are intended to
represent
(e.g. price, mark, studentName)

and program code is also executed by a computer
The computer will do exactly what it is told to do
The rules of the language determine exactly what happens
when the program is run

The computer does not know what you intended the program to do

13 / 71

An important point about program code

Program code is designed to be human readable
Familiar words are used for programming constructs
(if, else, while, repeat, for)
Indented format is similar to paragraphs and sections in text
Meaningful variable names suggest what they are intended to
represent
(e.g. price, mark, studentName)

and program code is also executed by a computer
The computer will do exactly what it is told to do
The rules of the language determine exactly what happens
when the program is run

The computer does not know what you intended the program to do

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

An important point about program code

• also worth stressing that you can, for instance, have a method called
“moveLeft”, and decide to write code that actually moves a circle to
the right.

• You can have a class called Circle, which actually makes shapes that
are triangles.

• This would be impolite to readers of your code; but the computer
wouldn’t care.

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

What is a programming language?

A program for a computer to follow must be expressed completely
unambiguously
There are many different programming languages in which programs
can be written
In order to write a working program, you need to learn

the vocabulary and syntax of the language, so you can write
statements that make sense
how to make sequences of legal statements that do simple tasks
how to express what you want the computer to do in a simple
enough way to translate into the programming language

Similar to learning the words, which form sentences, and allow you to
write a story, when learning a human language

14 / 71

What is a programming language?

A program for a computer to follow must be expressed completely
unambiguously
There are many different programming languages in which programs
can be written
In order to write a working program, you need to learn

the vocabulary and syntax of the language, so you can write
statements that make sense
how to make sequences of legal statements that do simple tasks
how to express what you want the computer to do in a simple
enough way to translate into the programming language

Similar to learning the words, which form sentences, and allow you to
write a story, when learning a human language

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

What is a programming language?

next slide - note that bugs are not magic

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Bugs have logical reasons

Programming can be difficult at first.
Bugs can seem to come from nowhere, for no reason.
But there is always a logical reason behind a bug.

15 / 71

Bugs have logical reasons

Programming can be difficult at first.
Bugs can seem to come from nowhere, for no reason.
But there is always a logical reason behind a bug.

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

Bugs have logical reasons

• next slide - APIs

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Ticket machines – an external view

An external view of a class means considering
What objects of the class do
How we create and use those objects

For example, ticket machines accept money, and supply tickets at a
fixed price
Some questions about that behaviour:

How is that price determined?
How is ‘money’ entered into a machine?
How does a machine keep track of the money that has been
entered?

This is the view relevant to the user of a class

Sometimes, you will be writing classes for use by other programmers
(or yourself, at a later date);
sometimes, you will be using classes other programmers have written.

16 / 71

Ticket machines – an external view

An external view of a class means considering
What objects of the class do
How we create and use those objects

For example, ticket machines accept money, and supply tickets at a
fixed price
Some questions about that behaviour:

How is that price determined?
How is ‘money’ entered into a machine?
How does a machine keep track of the money that has been
entered?

This is the view relevant to the user of a class

Sometimes, you will be writing classes for use by other programmers
(or yourself, at a later date);
sometimes, you will be using classes other programmers have written.20

18
-0

3-
06

CITS1001 week 2 Class definitions
Week 2 - Looking inside classes

Ticket machines – an external view

• next slide - it’s up to you to make it consistent
• examples:

– suppose we have number of grammatical errors in a doc
– or DOB and age

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Ticket machines – an internal view

An internal view of a class means considering
How it stores information
How it does things

Looking inside allows us to determine how behaviour is
provided or implemented
This is the view relevant to the writer of a class

All Java classes should have a consistent internal view

17 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

The four components of a class

A class definition has four components
Its name – what is the class called?
Its fields – what information do we hold for each object, and
how is it represented?
Its constructors – how are objects created?
Its methods – what can objects do, and how do they do it?

It is (usually) easiest to consider the four components in this order,
whether you are writing your own class, or reading someone else’s

18 / 71

The four components of a class

A class definition has four components
Its name – what is the class called?
Its fields – what information do we hold for each object, and
how is it represented?
Its constructors – how are objects created?
Its methods – what can objects do, and how do they do it?

It is (usually) easiest to consider the four components in this order,
whether you are writing your own class, or reading someone else’s

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

The four components of a class

• next slide - this is a typical order
• some notes:

– always be compiling
– simplest class = empty

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Basic class structure

public class ClassName

{

Fields

Constructors

Methods

}

The inner contents

(the body) of the class}

Curly brackets

Reserved words

19 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Syntax

Reserved words and curly brackets are our first encounter with
Java syntax
Source code must be structured in a certain way, as determined
by the rules of the language

Reserved words are words with a special meaning in Java
e.g. public, class, private, int
There are many, many others
Also known as keywords

Brackets (of all types) are everywhere in many languages
Here, they delimit the contents of the given class

20 / 71

Syntax

Reserved words and curly brackets are our first encounter with
Java syntax
Source code must be structured in a certain way, as determined
by the rules of the language

Reserved words are words with a special meaning in Java
e.g. public, class, private, int
There are many, many others
Also known as keywords

Brackets (of all types) are everywhere in many languages
Here, they delimit the contents of the given class

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

Syntax

• things that change rarely - ask for examples

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Fields

Fields store values for an
object.
They are also known as
instance variables.
Fields define the state of
an object.
In BlueJ, we can use
"Inspect" to view the
state.
Some values change often.
Some change rarely (or
not at all).

public class TicketMachine {
private int price;
private int balance;
private int total;
//...

}

private int price;

visibility modifier
type

variable name

21 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

The fields of TicketMachine

private int price;
private int balance;
private int total;

Each field is described by a variable, which has
A visibility modifier, which denotes who can access it (more on
this later)
A type, which denotes what values it can store (more on this
later)
A name, chosen to make its use clear to human readers

Additionally, and crucially, each field has a meaning
A sense of what information it stores
This should apply to every variable in every program you ever
write

Collectively, the fields denote the state of an object

22 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Review questions

What do you think is the type of each of the following fields?

private int count;
private Student representative;
private Server host;

What are the names of the following fields?

private boolean alive;
private Person tutor;
private Game game;

23 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Comments

The other thing you will see in the source file
TicketMachine.java is comments
Comments are ignored by the computer; they exist simply to
make the code easier for people to understand
Comments come in three principal types
Comments starting with //

In this case, the computer ignores everything up to the end of
the line

Comments starting with /*
In this case, the computer ignores everything up to the first
occurrence of */, which acts like a closing bracket for the
comment

Javadoc comments start with /** and end with */
We will discuss these later in the unit

24 / 71

Comments

The other thing you will see in the source file
TicketMachine.java is comments
Comments are ignored by the computer; they exist simply to
make the code easier for people to understand
Comments come in three principal types
Comments starting with //

In this case, the computer ignores everything up to the end of
the line

Comments starting with /*
In this case, the computer ignores everything up to the first
occurrence of */, which acts like a closing bracket for the
comment

Javadoc comments start with /** and end with */
We will discuss these later in the unit20

18
-0

3-
06

CITS1001 week 2 Class definitions
Week 2 - Looking inside classes

Comments

• CONSTRUCTORS

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Constructors

public TicketMachine(int cost) {
price = cost;
balance = 0;
total = 0;

}

Initialize an object.
Have the same name as their class.
Store initial values into the fields.
Can use parameter values for this.

25 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Constructors (2)

The principal job of a constructor is to initialise the fields of
the object
Initial values may be

Set as defaults (e.g. balance, total), or
Derived from data passed in as parameters (e.g. price)

Syntactically, the constructor is a special method
It has the same name as the class
It has no return type

Note that there may be more than one constructor

26 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Questions

To what class does the following constructor belong?

public Student(String name)

How many parameters does the following constructor have, and
what are their types?

public Book(String title, double price)

What do you think the types of the Book class’s fields are?
What about their names?

27 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Aside: Default initialisation

In Java, all fields are automatically initialised to a default value
if they are not explicitly initialised.
For integer fields, this default value is zero.
However, we prefer to write the explicit assignments anyway.
There is no disadvantage, and it serves to document what is
actually happening.

28 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Concepts for Constructors

Parameters
Scope of a variable
Lifetime of a variable
Assignment statements

29 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Passing data via parameters

Parameters are used by constructors and methods to receive
values from outside.
Parameters are another sort of variable

30 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Parameters

Parameter names inside a constructor or method are called
formal parameters
Parameter values outside are called actual parameters
So cost is a formal parameter, and a user-supplied value such
as 500 is an actual parameter
Scope

The scope of a variable defines the section of source code from
which the variable can be accessed.

Lifetime
The lifetime of a variable describes how long the variable
continues to exist before it is destroyed.

31 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Scope and lifetime - parameters vs fields

The scope of a formal parameter is restricted to the body of
the constructor or method in which it is declared.
The scope of a field is the whole of the class definition – it can
be accessed from anywhere in the same class.
The lifetime of a formal parameter is limited to a single call of
the constructor or method.
The lifetime of a field is the same as the lifetime of the object
it belongs to.

Examples: see TicketMachine code

32 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Choosing variable names

There is a lot of freedom over choice of names. Use it wisely!
Choose expressive names to make code easier to understand:

price, amount, name, age, etc.
Avoid cryptic names:

w, t5, xyz123

33 / 71

Choosing variable names

There is a lot of freedom over choice of names. Use it wisely!
Choose expressive names to make code easier to understand:

price, amount, name, age, etc.
Avoid cryptic names:

w, t5, xyz123

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

Choosing variable names

my rule: they’re like nouns or pronouns. How complex the name
should be depends on how far away you are from where it was
defined. e.g. “The lecturer is here. Her car is there.”

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Assignment

Values are stored into fields (and other variables) via
assignment statements:

variable = expression;
price = cost;

A variable stores a single value, so any previous value is lost.

34 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

exercise

Suppose that the class Pet has a field called name that is of
type String. Write an assignment statement in the body of
the following constructor so the the name field will be
initialized with the value of the constructor’s parameter.

public Pet(String petsName) {
// assignment statement goes here

}

35 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Concepts for methods

Methods
Accessor methods
Mutator methods

36 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Methods

Methods implement the behaviour of objects
Methods have a consistent structure comprising

a header, and
a body

Methods can implement any form of behaviour, as required by
the class being implemented

37 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Method structure

The header provides the method’s signature:
public int getPrice()

The header tells us:
the name of the method
what parameters it takes
whether it returns a result
its visibility to objects of other classes

The body encloses the method’s statements.

38 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Accessor (get) methods

public int getPrice()

{

return price;

}

return type

method name

parameter list

(here, empty)

start and end of method body (block)

return statement

visibility modifier

39 / 71

Accessor (get) methods

public int getPrice()

{

return price;

}

return type

method name

parameter list

(here, empty)

start and end of method body (block)

return statement

visibility modifier

20
18

-0
3-

06
CITS1001 week 2 Class definitions

Week 2 - Looking inside classes

Accessor (get) methods

next slide:

• note commands vs queries
• “minor calculation” - e.g. might calculate age on the fly

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Accessor methods

An accessor method returns a value (result) of the type given
in the header
Usually it just looks up the current value of one of the object’s
fields

Sometimes it does some minor calculation on that value
An accessor method always has a return type that is not void
The method will contain a return statement to return the value

NB: returning is not printing!

40 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Mutator methods

public void insertMoney(int amount)

{

balance = balance + amount;

}

return type

method name

parameter list

visibility modifier

assignment statementfield being mutated

41 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Mutator methods (2)

They have the same method structure
Header and body

They are used to mutate (i.e. change) an object’s state
Achieved through changing the value of one or more fields

They usually have the return type void
They typically contain assignment statements
They often receive data through parameters

42 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

set mutator methods

Fields often have dedicated “set” mutator methods
These have a simple, distinctive form

void return type
method name related to the field name
single parameter, with the same type as the type of the field
a single assignment statement

43 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

A typical set method

public void setDiscount(int amount) {
discount = amount;

}

We can infer from this that discount is probably a field of type
int, i.e.

private int discount;

44 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Protective mutators

A set method does not have to simply assign the parameter to
the field
The parameter may be checked for validity,
and rejected if inappropriate
Mutators thereby protect fields

45 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Working with strings and output - printing

public void printTicket() {
// Simulate the printing of a ticket.
System.out.println("##################");
System.out.println("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println("##################");
total = total + balance;
// Clear the balance.
balance = 0;

}

46 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

String concatenation

We can concatenate strings using the same “+” operator used for
numeric addition.

4 + 5
9
“wind” + “ow”
“window”
“Result:” + 6
“Result: 6”
“#” + price + " cents“
”# 500 cents"

47 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Quiz

If we try to concatenate a non-String value and a string, the value
will be converted into a String (more on how this happens, later):

System.out.println(5 + 6 + “hello”);
11hello
System.out.println(“hello” + 5 + 6);
hello56

48 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

exercise

How can we tell from just its header that setPrice is a
method, and not a constructor?

public void setPrice(int cost)

Complete the body of the setPrice method so that it assigns
the value of its parameter to the price field.

49 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Method summary

Methods implement all object behaviour
A method has a name and a return-type

The return-type may be void
A non-void return type means the method returns a value to its
caller

A method might take parameters
Parameters bring values in from outside for the method to use

Accessor methods provide information about an object
Mutator methods alter the state of an object
Other sorts of methods can accomplish a variety of tasks

50 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Inside method bodies

51 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Concepts

conditional statements
local variables

52 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Reflecting on the ticket machines

The behavior of the ticket machine objects so far is inadequate
in several ways:

No checks on the amounts entered.
No refunds.
No checks for a sensible initialization.

How can we do better?
We need more sophisticated behavior.

53 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Making choices in everyday life

examples:

“If I have enough money left, I will go out for a meal
Otherwise, I will stay home and watch a movie”

if(I have enough money left) {
// go out for a meal;

}
else {

// stay home and watch a movie;
}

The result depends on the amount of money available at the
time the decision is made

54 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Making choices in Java

if(perform some test) {

Do these statements if the test gave a true result

}

else {

Do these statements if the test gave a false result

}

‘if’ keyword
boolean condition to be tested

actions to perform if condition is true

actions to perform if condition is false
‘else’ keyword

55 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Making a choice in the ticket machine

public void insertMoney(int amount) {
if(amount > 0) {

balance = balance + amount;
}
else {

System.out.println(
"Use a positive amount: " +
amount);

}
}

56 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Print a ticket

We’ll examine the method for printing a ticket -
public void printTicket()

57 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Exercise

Assume we have variables price and budget.
Write an if statement that compares the value in price
against the value in budget. If price is greater than budget,
print the message “Too expensive”; otherwise print the
message “Just right”.

58 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Variables – a recap

Fields are one sort of variable.
They store values through the life of an object.
They are accessible throughout the class.

Parameters are another sort of variable:
They receive values from outside the method.
They help a method complete its task.
Each call to the method receives a fresh set of values.
Parameter values are short lived.

59 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Local variables

Methods can define their own, local variables:
Short lived, like parameters.
The method sets their values – unlike parameters, they do not
receive external values.
Used for ‘temporary’ calculation and storage.
They exist only as long as the method is being executed.
They are only accessible from within the method.

60 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Scope and lifetime

Each block defines a new scope.
Class, method and statement.

Scopes may be nested:
statement block inside another block inside a method body
inside a class body.

Scope is static (textual).
Lifetime is dynamic (runtime).

61 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Local variables [vs fields]

public int refundBalance()

{

int amountToRefund;

amountToRefund = balance;

balance = 0;

return amountToRefund;

}

A local variable

No visibility

modifier

62 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Local variables’ scope and lifetime

The scope of a local variable is the block in which it is declared.
The lifetime of a local variable is the time of execution of the
block in which it is declared.
The scope of a field is its whole class.
The lifetime of a field is the lifetime of its containing object.

63 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

How do we write ‘refundBalance’?

Return all the money left in the machine (balance) to the
customer.
And clear the balance to 0

64 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

refundBalance method

public int refundBalance() {
int amountToRefund;
amountToRefund = balance;
balance = 0;
return amountToRefund;

}

65 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

The BlueJ debugger

66 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

The debugger

Useful for gaining insights into program behavior . . .
. . . whether or not there is a program error.
Set breakpoints.
Examine variables.
Step through code.

Watch this introductory video:
Using the Debugger in BlueJ with Java
https://www.youtube.com/watch?v=w_iy0jmMmkA

67 / 71

https://www.youtube.com/watch?v=w_iy0jmMmkA

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Review (1)

Class bodies contain fields, constructors, methods and
comments.
Field

Fields store data for an object to use. Fields are also known as
instance variables.

Constructors
Constructors allow each object to be set up properly when it is
first created.

Comment
Comments are inserted into source code to help human readers.
They have no effect on the functionality of the code.

68 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Review (2)

Scope
The scope of a variable defines the section of source code from
which the variable can be accessed.

Lifetime
The lifetime of a variable describes how long the variable
continues to exist before it is destroyed.

Assignment
Assignment statements store
the value represented by the right-hand side
of the statement in
the variable named on the left.

69 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Review (3)

Methods
Methods implement the behavior of objects.

Accessor methods
Accessor methods return information about the state of an
object.

Mutator method
Mutator methods change the state of an object.

println
The method System.out.println() prints its parameter to
the text terminal.

70 / 71

Week 1 revision Week 2 - Looking inside classes Inside method bodies The BlueJ debugger

Review (4)

Conditional
A conditional statement takes one of two possible actions based
upon the result of a test.

Local variables
A local variable is a variable declared and used within a single
method
Its scope and lifetime are limited to that of the method.

Debugger
A debugger is a software tool that helps in examining how an
application executes. It can be used to help find bugs.

71 / 71

	Week 1 revision
	Week 2 - Looking inside classes
	Inside method bodies
	The BlueJ debugger

