
DEFENSIVE 
PROGRAMMING 
CITS1001 



Lecture Outline 

• Why program 
defensively? 

• Encapsulation 
• Access Restrictions 
• Unchecked Exceptions 
• Checked Exceptions 

2 



DEFENSIVE 
PROGRAMMING 



Why Program Defensively?  
• Normally, your classes will form part of a larger system 
•  So other programmers will be using and relying upon your 

classes 
• Obviously, your classes should be correct, but equally 

importantly, your classes should be robust – that is, resistant to 
accidental misuse by other programmers 

• You should aim to ensure that no errors in the final system can 
be attributed to the behaviour of your classes 

• We use the terminology “client code” for the code written by 
other programmers that is using your classes 

4 



Encapsulation 

• One of the most important features of OOP is that it facilitates 
encapsulation – a class encapsulates both the data it uses, and 
the methods to manipulate the data 

•  The external user only sees the public methods of the class, and 
interacts with the objects of that class purely by calling those 
methods 

•  This has several benefits 
•  Users are insulated from needing to learn details outside their scope of 

competence 
•  Programmers can alter or improve the implementation without affecting 

any client code 

5 



Access Restrictions 
• Encapsulation is enforced by the correct use of the 

access modifiers, public, private, <default>, and 
protected 

• If you omit the access modifier, then you get the 
default, sometimes known as “package” 

• These latter two modifiers are only really relevant for 
multi-package programs that use inheritance, so we 
need only consider public and private at the moment 

6 



public and private 

• If an instance variable is public, then 
• Any object can access it directly 
• Any object can alter it directly 

• If an instance variable is private, then 
• Objects that belong to the same class can access and alter it 
• Notice that privacy is a per-class attribute not per-object 

• If a method is public, then 
• Any object can call that method 

• If a method is private, then 
• Objects that belong to the same class can call it 

7 



Public Methods 

•  The public interface of a class is its list of public methods, 
which details all of the services that this class provides 

• Once a class is released (for example, as part of a library), then 
it is impossible or very difficult to change its public interface, 
because client code may use any of the public methods 

•  Public methods must be precisely documented and robust to 
incorrect input and accidental misuse 

• Classes should make as few methods public as possible – limit 
them to just the methods needed for the class to perform its 
stated function 

8 



Public variables 

• Normally instance variables should not be public, 
since if client code can alter the values of instance 
variables then the benefit of encapsulation is lost 

• If client access to instance variables is desirable, then 
it should be provided by accessor and/or mutator 
methods (getters and setters) 

• Advantages: 
• Maintenance of object integrity 
•  Permits change of implementation 

9 



Simple Example 
class MyDate { 
public int day; 

public String month; 

public int year; 

} 
 

MyDate md = new MyDate(); 
md.day = 31; 

md.month = “Feb”; 

10 

md is corrupt and so could 
cause problems 
elsewhere in the system 



Use mutators instead 
public void setDay(int day) { 
// Check that day is valid for this.month  
// before setting the variables 

} 
public int getDay() { 
  return this.day; 
} 
Setter methods act as “gatekeepers” to protect the integrity of 

objects.   
Setters reject values that would create a corrupt object. 
Getters return a value for client code to use, but do not allow the 

object itself to be changed. 

11 



JAVA EXCEPTIONS 



Dealing with Errors 
•  Even if your classes are well-protected, errors still occur 

•  Client code attempts to use your methods incorrectly, by passing incorrect 
or invalid parameter values 

•  Your code cannot perform the services it is meant to due to 
circumstances outside your control (such as an Internet site being 
unavailable) 
•  Your own code behaves incorrectly and/or your objects become corrupted 

•  Java provides exceptions (checked and unchecked) to handle 
these situations 

13 



Invalid Parameters 

•  The String method charAt(int index)  
returns the character at position index in a String 
 

•  The only valid values for the parameter are numbers from 0 up to 
one less than the length of the String 

• What happens if charAt(-1) is ever called? 

14 



The method “throws” an exception 
•  If a parameter is invalid, then the method cannot do anything 

sensible with the request and so it creates an object from an 
Exception class and “throws” it 

•  If an Exception is thrown, then the runtime environment 
immediately tries to deal with it 
•  If it is an unchecked exception, it simply causes the runtime to halt with 

an error message 
•  If it is a checked exception, then the runtime tries to find some object 

willing to deal with it 
•  The method charAt throws a 
StringIndexOutOfBoundsException  
 which is unchecked and hence causes the program to cease 
execution (crash!) 

15 



Throw your own exceptions 
• Your own methods and/or constructors can throw exceptions if 

clients attempt to call them incorrectly 
•  This is how your code can enforce rules about how methods 

should be used 
•  For example, we can insist that the deposit and withdraw 

methods from the BankAccount class are called with positive 
values for the amount 

•  The general mechanism is to check the parameters and if they 
are invalid in some way to then 
•  Create an object from class IllegalArgumentException 
•  Throw that object 

16 



Throw your own 

Public BankAccount(int amount) { 
if (amount >= 0) { 
 balance = amount; 
} else { 
 throw new IllegalArgumentException( 
     "Account opening balance " +  
      amount + " must be >0”); 
} 

} 

•  If the amount is negative then declare the variable ie, create the 
object and then throw it 

•  The constructor for IllegalArgumentException takes a String 
argument which is used for an error message that is returned to 
the user 

•  Throwing an exception is often used by constructors to 
prohibit the construction of invalid objects 

17 



“Predictable” errors 
• Unchecked exceptions terminate program execution and are 

used when the client code must be seriously wrong 
• However, there are error situations that do not necessarily mean 

that the client code is incorrect, but reflect either a transient, 
predictable or easily-correctable mistake – this is particularly 
common when handling end-user input, or dealing with the 
operating system 

•  For example, printers may be out of paper, disks may be full, 
Web sites may be inaccessible, filenames might be mistyped 
and so on. 

18 



Checked Exceptions 
• Methods prone to such errors may elect to throw 

checked exceptions, rather than unchecked exceptions 
• Using checked exceptions is more complicated than 

using unchecked exceptions in two ways: 
•  The programmer must declare that the method might throw a 

checked exception, and 
•  The client code using that method is required to provide code 

that will be run if the method does throw an exception 

19 



Client Perspective 
• Many of the Java library classes declare that they might throw a 

checked exception 

20 

public FileReader(File file) throws FileNotFoundException  
Creates a new FileReader, given the File to read from.  
Parameters: 

file - the File to read from  
Throws:  

FileNotFoundException - if the file does not exist, is a directory 
rather than a regular file, or for some other reason cannot be 
opened for reading. 

	




try and catch 
• If code uses a method that might throw a checked 

exception, then it must enclose it in a try/catch block 
 
try { 
FileReader fr = new FileReader(“lect.ppt”); 
 // code for when everything is OK 
} catch (java.io.FileNotFoundException e) { 
 // code for when things go wrong 

} 

• Try to open and process this file, but be prepared to 
catch an exception if necessary 

21 



try and catch continued 
• If everything goes smoothly, the code in the try block 

is executed, the code in the catch block is skipped 
• Otherwise, if one of the statements in the try block 

causes an exception to be thrown, then execution 
immediately jumps to the catch block, which tries to 
recover from the problem 

• What can the catch block do? 
•  For human users:  report the error and ask the user to change 

their request, or retype their password, or … 
•  In all cases: Provide some feedback as to the likely cause of 

the error and how it may be overcome, even if it ultimately it 
just causes execution to cease 

22 



Using and Testing exceptions 

@Test(expected = 
IllegalArgumentException.class) 
 public void testIllegalDeposit() { 
 BankAccount(-20); 
} 

 

• Java provides a many exception classes that cover most 
common possibilities 

• Exceptions are simply objects in a Java program, so you 
can write your own classes of exceptions if desired 

23 



Some useful Java Exceptions 
•  IllegalArgumentException 
•  IndexOutOfBoundsException 
• NullPointerException  
• ArithmeticException  
•  IOException, FileNotFoundException 

24 



Exception vs RuntimeException 
• Checked exceptions in Java extend the 

java.lang.Exception class 
• Unchecked exceptions extend the 

java.lang.RuntimeException class 

25 



Programmer Perspective 
•  If you choose to write a method that throws a checked 

exception, then this must be declared in the source code, where 
you must specify the type of exception that might be thrown 
public void printFile(String fileName) throws 
 java.io.FileNotFoundException { 
 // Code that attempts to print the file 
} 

•  If you declare that your method might throw a checked 
exception, then the compiler will force any client code that uses 
your method to use a try/catch block 

•  This explicitly makes the client code responsible for these 
situations 

26 



Checked or Unchecked ? 
• Unchecked Exceptions 

•  Any method can throw them without declaring the possibility 
•  No need for client code to use try/catch 
•  Causes execution to cease 
•  Used for fatal errors that are unexpected and unlikely to be recoverable 

• Checked Exceptions 
•  Methods must declare that they might throw them 
•  Client code must use try/catch 
•  Causes control flow to move to the catch block 
•  Used for situations that are not entirely unexpected and from which 

clients may be able to recover 
•  Use only if you think the client code might be able to do something 

about the problem 

27 



Summary 

• Programming defensively means making your code 
robust to unexpected use. 

• Use the need to know principle: Only expose the 
parts of your class that your client classes need to 
know 

• Java exceptions provide a uniform way of handling 
errors 

• Exceptions may be Unchecked or Checked 

28 


