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Why Program Defensively?  
• Normally, your classes will form part of a larger system 
•  So other programmers will be using and relying upon your 

classes 
• Obviously, your classes should be correct, but equally 

importantly, your classes should be robust – that is, resistant to 
accidental misuse by other programmers 

• You should aim to ensure that no errors in the final system can 
be attributed to the behaviour of your classes 

• We use the terminology “client code” for the code written by 
other programmers that is using your classes 
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Encapsulation 

• One of the most important features of OOP is that it facilitates 
encapsulation – a class encapsulates both the data it uses, and 
the methods to manipulate the data 

•  The external user only sees the public methods of the class, and 
interacts with the objects of that class purely by calling those 
methods 

•  This has several benefits 
•  Users are insulated from needing to learn details outside their scope of 

competence 
•  Programmers can alter or improve the implementation without affecting 

any client code 
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Access Restrictions 
• Encapsulation is enforced by the correct use of the 

access modifiers, public, private, <default>, and 
protected 

• If you omit the access modifier, then you get the 
default, sometimes known as “package” 

• These latter two modifiers are only really relevant for 
multi-package programs that use inheritance, so we 
need only consider public and private at the moment 
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public and private 

• If an instance variable is public, then 
• Any object can access it directly 
• Any object can alter it directly 

• If an instance variable is private, then 
• Objects that belong to the same class can access and alter it 
• Notice that privacy is a per-class attribute not per-object 

• If a method is public, then 
• Any object can call that method 

• If a method is private, then 
• Objects that belong to the same class can call it 
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Public Methods 

•  The public interface of a class is its list of public methods, 
which details all of the services that this class provides 

• Once a class is released (for example, as part of a library), then 
it is impossible or very difficult to change its public interface, 
because client code may use any of the public methods 

•  Public methods must be precisely documented and robust to 
incorrect input and accidental misuse 

• Classes should make as few methods public as possible – limit 
them to just the methods needed for the class to perform its 
stated function 
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Public variables 

• Normally instance variables should not be public, 
since if client code can alter the values of instance 
variables then the benefit of encapsulation is lost 

• If client access to instance variables is desirable, then 
it should be provided by accessor and/or mutator 
methods (getters and setters) 

• Advantages: 
• Maintenance of object integrity 
•  Permits change of implementation 
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Simple Example 
class MyDate { 
public int day; 

public String month; 

public int year; 

} 
 

MyDate md = new MyDate(); 
md.day = 31; 

md.month = “Feb”; 
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md is corrupt and so could 
cause problems 
elsewhere in the system 



Use mutators instead 
public void setDay(int day) { 
// Check that day is valid for this.month  
// before setting the variables 

} 
public int getDay() { 
  return this.day; 
} 
Setter methods act as “gatekeepers” to protect the integrity of 

objects.   
Setters reject values that would create a corrupt object. 
Getters return a value for client code to use, but do not allow the 

object itself to be changed. 
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JAVA EXCEPTIONS 



Dealing with Errors 
•  Even if your classes are well-protected, errors still occur 

•  Client code attempts to use your methods incorrectly, by passing incorrect 
or invalid parameter values 

•  Your code cannot perform the services it is meant to due to 
circumstances outside your control (such as an Internet site being 
unavailable) 
•  Your own code behaves incorrectly and/or your objects become corrupted 

•  Java provides exceptions (checked and unchecked) to handle 
these situations 
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Invalid Parameters 

•  The String method charAt(int index)  
returns the character at position index in a String 
 

•  The only valid values for the parameter are numbers from 0 up to 
one less than the length of the String 

• What happens if charAt(-1) is ever called? 
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The method “throws” an exception 
•  If a parameter is invalid, then the method cannot do anything 

sensible with the request and so it creates an object from an 
Exception class and “throws” it 

•  If an Exception is thrown, then the runtime environment 
immediately tries to deal with it 
•  If it is an unchecked exception, it simply causes the runtime to halt with 

an error message 
•  If it is a checked exception, then the runtime tries to find some object 

willing to deal with it 
•  The method charAt throws a 
StringIndexOutOfBoundsException  
 which is unchecked and hence causes the program to cease 
execution (crash!) 
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Throw your own exceptions 
• Your own methods and/or constructors can throw exceptions if 

clients attempt to call them incorrectly 
•  This is how your code can enforce rules about how methods 

should be used 
•  For example, we can insist that the deposit and withdraw 

methods from the BankAccount class are called with positive 
values for the amount 

•  The general mechanism is to check the parameters and if they 
are invalid in some way to then 
•  Create an object from class IllegalArgumentException 
•  Throw that object 
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Throw your own 

Public BankAccount(int amount) { 
if (amount >= 0) { 
 balance = amount; 
} else { 
 throw new IllegalArgumentException( 
     "Account opening balance " +  
      amount + " must be >0”); 
} 

} 

•  If the amount is negative then declare the variable ie, create the 
object and then throw it 

•  The constructor for IllegalArgumentException takes a String 
argument which is used for an error message that is returned to 
the user 

•  Throwing an exception is often used by constructors to 
prohibit the construction of invalid objects 
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“Predictable” errors 
• Unchecked exceptions terminate program execution and are 

used when the client code must be seriously wrong 
• However, there are error situations that do not necessarily mean 

that the client code is incorrect, but reflect either a transient, 
predictable or easily-correctable mistake – this is particularly 
common when handling end-user input, or dealing with the 
operating system 

•  For example, printers may be out of paper, disks may be full, 
Web sites may be inaccessible, filenames might be mistyped 
and so on. 
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Checked Exceptions 
• Methods prone to such errors may elect to throw 

checked exceptions, rather than unchecked exceptions 
• Using checked exceptions is more complicated than 

using unchecked exceptions in two ways: 
•  The programmer must declare that the method might throw a 

checked exception, and 
•  The client code using that method is required to provide code 

that will be run if the method does throw an exception 
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Client Perspective 
• Many of the Java library classes declare that they might throw a 

checked exception 

20 

public FileReader(File file) throws FileNotFoundException  
Creates a new FileReader, given the File to read from.  
Parameters: 

file - the File to read from  
Throws:  

FileNotFoundException - if the file does not exist, is a directory 
rather than a regular file, or for some other reason cannot be 
opened for reading. 

	




try and catch 
• If code uses a method that might throw a checked 

exception, then it must enclose it in a try/catch block 
 
try { 
FileReader fr = new FileReader(“lect.ppt”); 
 // code for when everything is OK 
} catch (java.io.FileNotFoundException e) { 
 // code for when things go wrong 

} 

• Try to open and process this file, but be prepared to 
catch an exception if necessary 
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try and catch continued 
• If everything goes smoothly, the code in the try block 

is executed, the code in the catch block is skipped 
• Otherwise, if one of the statements in the try block 

causes an exception to be thrown, then execution 
immediately jumps to the catch block, which tries to 
recover from the problem 

• What can the catch block do? 
•  For human users:  report the error and ask the user to change 

their request, or retype their password, or … 
•  In all cases: Provide some feedback as to the likely cause of 

the error and how it may be overcome, even if it ultimately it 
just causes execution to cease 
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Using and Testing exceptions 

@Test(expected = 
IllegalArgumentException.class) 
 public void testIllegalDeposit() { 
 BankAccount(-20); 
} 

 

• Java provides a many exception classes that cover most 
common possibilities 

• Exceptions are simply objects in a Java program, so you 
can write your own classes of exceptions if desired 
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Some useful Java Exceptions 
•  IllegalArgumentException 
•  IndexOutOfBoundsException 
• NullPointerException  
• ArithmeticException  
•  IOException, FileNotFoundException 
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Exception vs RuntimeException 
• Checked exceptions in Java extend the 

java.lang.Exception class 
• Unchecked exceptions extend the 

java.lang.RuntimeException class 
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Programmer Perspective 
•  If you choose to write a method that throws a checked 

exception, then this must be declared in the source code, where 
you must specify the type of exception that might be thrown 
public void printFile(String fileName) throws 
 java.io.FileNotFoundException { 
 // Code that attempts to print the file 
} 

•  If you declare that your method might throw a checked 
exception, then the compiler will force any client code that uses 
your method to use a try/catch block 

•  This explicitly makes the client code responsible for these 
situations 
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Checked or Unchecked ? 
• Unchecked Exceptions 

•  Any method can throw them without declaring the possibility 
•  No need for client code to use try/catch 
•  Causes execution to cease 
•  Used for fatal errors that are unexpected and unlikely to be recoverable 

• Checked Exceptions 
•  Methods must declare that they might throw them 
•  Client code must use try/catch 
•  Causes control flow to move to the catch block 
•  Used for situations that are not entirely unexpected and from which 

clients may be able to recover 
•  Use only if you think the client code might be able to do something 

about the problem 
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Summary 

• Programming defensively means making your code 
robust to unexpected use. 

• Use the need to know principle: Only expose the 
parts of your class that your client classes need to 
know 

• Java exceptions provide a uniform way of handling 
errors 

• Exceptions may be Unchecked or Checked 
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