# Lego Robots and Software Design

CITS1001 extension notes
Rachel Cardell-Oliver



#### Lecture Overview

- 1. Designing NXT Robots
- 2. NXT Hardware
- 3. Sensors and Actuator API
- 4. The Behaviour Interface



## Software Design

is a problem-solving process whose objective is to find and describe a way

- □ To implement the system's functional requirements...
- While respecting the constraints imposed by the quality, platform and process requirements, including the budget
- And while adhering to general principles of good quality



#### Lecture Overview

- 1. Designing NXT Robots
- 2. NXT Hardware
- 3. Lejos Java API
- 4. The Behaviour Interface

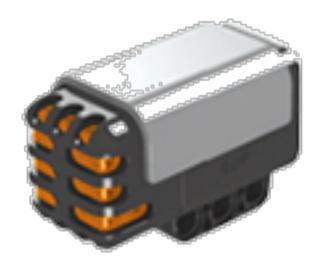


## Lego NXT: by Ro Mathew

From the Czech word:

## robota

Slavery, Drugery, Servitude –
 Forced Labour




#### **Robot Sensors:**

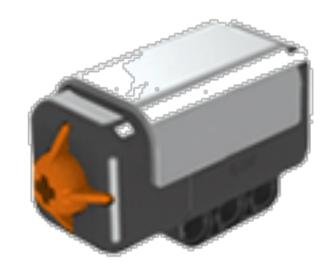
Provide information for the robot to examine its environment.



### **Robot Sound:**











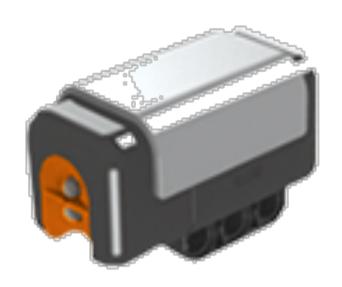




## **Robot Touch:**












BUMPED

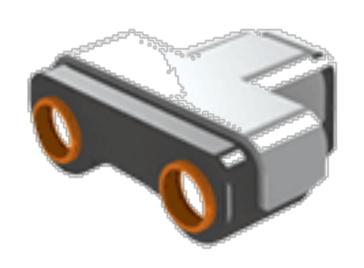
## Robot Vision - Colour:

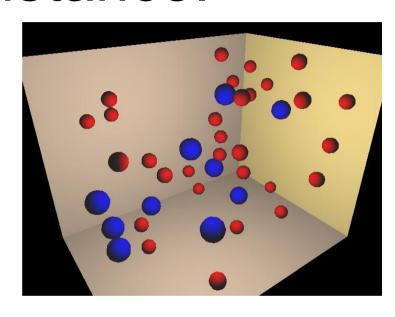




This is what your eyes see

This is what your robot will see, using the light sensor.








## Robot Vision – Distance:

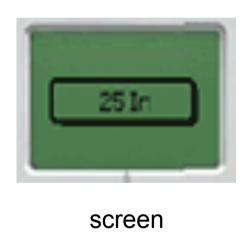













### Robot Peripherals:

■ Allows the robot to change its environment.



## Robot Peripherals:





speakers



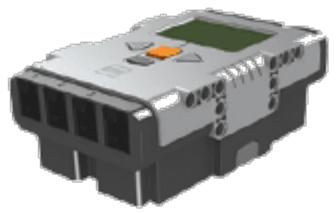
#### Robot Controller:

Acts as the brain for the robot: Coordinates Devices



## ROBOT CONTROLLER




Connect to our computer

Store programs and data

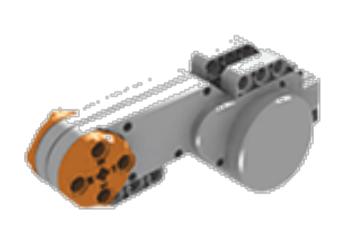
Connect to our sensors and motors

Retrieve information and provide power

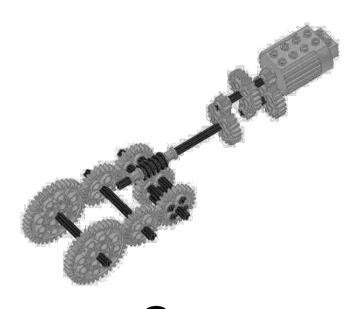
Run programs and display information






### Robot Motion System:

Acts as the muscles for the robot allows physical movement




#### **Robot Motion:**

The more sensors, the better the robot is able to interact with the environment.



Motors



Gears and Axles



#### Robot System:

Incorporates sensors, peripherals, motion and power systems



## Robot System:



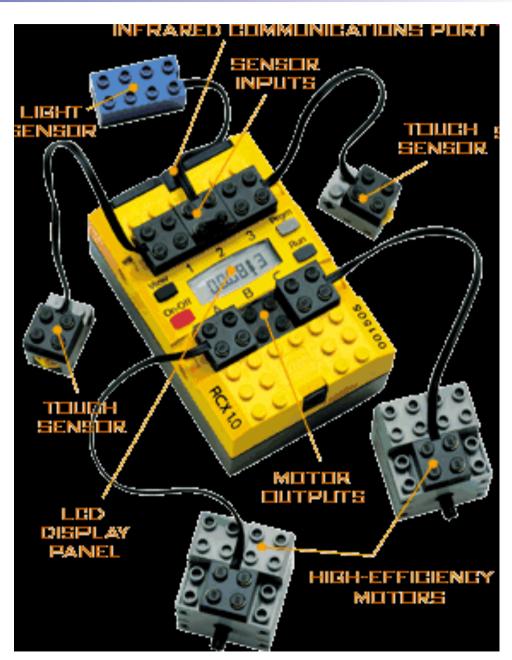


## For Building Instructions see CITS1001 extensions page

#### Components

Basic NXT Driving Base
 Motor Module
 Sound Sensor Module
 Touch Sensor Module
 Ultrasonic Sensor Module

#### **Models**


ScorpionTriBotAlpha Rex humanoid





## Lego RCX







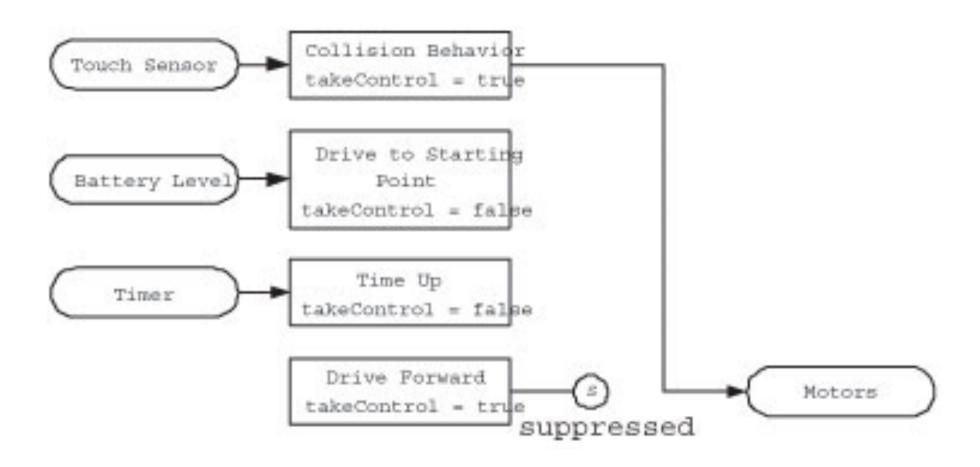
#### Lecture Overview

- 1. Designing NXT Robots
- 2. NXT Hardware
- 3. Lejos Java API
- 4. The Behaviour Interface



#### Cockroach Robot

```
import lejos.nxt.*;
class Cockroach {
  public static void main(String [] args) {
      LightSensor ls = new LightSensor(SensorPort.S2);
      Motor.B.forward();
      Motor.C.forward();
      LCD.drawString("Too much light", 3, 4);
      LCD.refresh();
      while (ls.readValue() > 55) {
          //keep moving forward until dark is found }
      LCD.drawString("That's better", 3, 4);
      LCD.refresh();
      Motor.B.stop();
      Motor.C.stop();
```




#### Lecture Overview

- 1. Designing NXT Robots
- 2. NXT Hardware
- 3. Lejos Java API
- 4. Lejos Behaviour Interface (from the book Max Lego NXT, Chapter 18)



## Subsumption





```
package lejos.subsumption;
public interface Behavior {
public boolean takeControl();
Trigger condition for invoking this behaviour
public void action();
Start a behaviour (eg. move forward)

    Actions must return quickly (so that Arbitrator can

  continue checking takeControl)
public void suppress();

    Terminate this behaviour (eg. Stop a motor)

Also update any data if needed
```



#### **Arbitrator**

```
public Arbitrator(Behaviour [] behaviours);
```

Create an arbitrator with an array of behaviours: highest array index has highest priority

```
public void start()
```

- Starts the arbitration system:
  - call takeControl() for each behaviour starting with the highest priority behaviour, until true
  - □ Execute the suppress() method of the current (lower priority) behaviour then
  - □ Execute the action() method of the chosen behaviour



#### Learn More ...

- Lejos project home page
- http://lejos.sourceforge.net/
  - □ Lejos NXT API
  - □ Sample Programs
    - See BumperCar example for behaviours
  - Lego RCX tutorial (for previous generation hardware, but many parts still relevant)