Artificial Intelligence

Topic 5

Game playing

- broadening our world view — dealing with incompleteness
- why play games?
- perfect decisions — the Minimax algorithm
- dealing with resource limits
 — evaluation functions
 — cutting off search
- alpha-beta pruning
- game-playing agents in action

Reading: Russell and Norvig, Chapter 5
We have assumed we are dealing with world descriptions that are:

complete — all necessary information about the problem is available to the search algorithm

deterministic — effects of actions are uniquely determined

Real-world problems are rarely complete and deterministic...

Sources of Incompleteness

sensor limitations — not possible to gather enough information about the world to completely know its state — includes the future!

intractability — full state description is too large to store, or search tree too large to compute

Sources of (Effective) Nondeterminism

- humans, the weather, stress fractures, dice, . . .

Aside...

Debate: incompleteness ↔ nondeterminism
1.1 Approaches for Dealing with Incompleteness

contingency planning
- build all possibilities into the plan
- may make the tree very large
- can only guarantee a solution if the number of contingencies is finite and tractable

interleaving or adaptive planning
- alternate between planning, acting, and sensing
- requires extra work during execution — planning cannot be done in advance (or “off-line”)

strategy learning
- learn, from looking at examples, strategies that can be applied in any situation
- must decide on parameterisation, how to evaluate states, how many examples to use, ... black art??
2. Why Play Games?

- abstraction of real world
- well-defined, clear state descriptions
- limited operations, clearly defined consequences

but!

- provide a mechanism for investigating many of the real-world issues outlined above
 ⇒ more like the real world than examples so far

Added twist — the domain contains hostile agents (also making it like the real world...?)
2.1 Examples

Tractable Problem with Complete Information

Noughts and crosses (tic-tac-toe) for control freaks — you get to choose moves for both players!

Stop when you get to a goal state.

- What uninformed search would you select? How many states visited?
- What would be an appropriate heuristic for an informed search? How many states visited?
2.1 Examples

Tractable Contingency Problem

Noughts and crosses — allow for all the opponents moves. (Opponent is non-deterministic.)

How many states?

Intractable Contingency Problem

Chess

- average branching factor 35, approx 50 operations
 \[\Rightarrow \] search tree has about \(35^{100}\) nodes (although only about \(10^{40}\) different legal positions)!
- cannot solve by brute force, must use other approaches, eg.
 - interleave time- (or space-) limited search with moves
 \[\Rightarrow \] this section
 * algorithm for perfect play (Von Neumann, 1944)
 * finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
 * pruning to reduce costs (McCarthy, 1956)
 - learn strategies that determine what to do based on some aspects of the current position
 \[\Rightarrow \] later in the course
Perfect play for deterministic, perfect-information games

- two players, Max and Min, both try to win
- Max moves first
 \[\Rightarrow \text{can Max find a strategy that } \textit{always wins}? \]

Define a game as a kind of search problem with:

- initial state
- set of legal moves (operators)
- terminal test — is the game over?
- utility function — how good is the outcome for each player?

eg. Tic-tac-toe — can Max choose a move that always results in a terminal state with a utility of +1?
3. Perfect Decisions — **Minimax Algorithm**

Even for this simple game the search tree is large.

Try an even simpler game...
3. Perfect Decisions — Minimax Algorithm

e.g. Two-ply (made-up game)

\[
\begin{array}{c}
\text{MAX} \\
A_1 \\
A_2 \\
A_3 \\
\text{MIN} \\
A_{11} \\
A_{12} \\
A_{13} \\
A_{21} \\
A_{22} \\
A_{23} \\
A_{31} \\
A_{32} \\
A_{33}
\end{array}
\]

(one move deep, two ply)

- MAX’s aim — maximise utility of terminal state
- MIN’s aim — minimise it
- what is MAX’s optimal strategy, assuming MIN makes the best possible moves?
3. Perfect Decisions — Minimax Algorithm

function Minimax-Decision(game) returns an operator
 for each op in Operators[game] do
 Value[op] ← Minimax-Value(Apply(op, game), game)
 end
 return the op with the highest Value[op]

function Minimax-Value(state, game) returns a utility value
 if Terminal-Test[game](state) then
 return Utility[game](state)
 else if MAX is to move in state then
 return the highest Minimax-Value of Successors(state)
 else
 return the lowest Minimax-Value of Successors(state)
3. **Perfect Decisions — Minimax Algorithm**

Complete Yes, if tree is finite (chess has specific rules for this)

Optimal Yes, against an optimal opponent. Otherwise??

Time complexity $O(b^m)$

Space complexity $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for “reasonable” games

\Rightarrow exact solution completely infeasible

Resource limits

Usually time: suppose we have 100 seconds, explore 10^4 nodes/second

$\Rightarrow 10^6$ nodes per move

Standard approach:

- **cutoff test**
 e.g., depth limit (perhaps add quiescence search)

- **evaluation function**
 $=$ estimated desirability of position
4. Evaluation functions

Instead of stopping at terminal states and using utility function, cut off search and use a heuristic **evaluation function**.

Chess players have been doing this for years...

- **simple** — 1 for pawn, 3 for knight/bishop, 5 for rook, etc
- **more involved** — centre pawns, rooks on open files, etc

Can be expressed as **linear weighted sum of features**

\[
Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

e.g., \(w_1 = 9\) with
\[f_1(s) = (\text{number of white queens}) - (\text{number of black queens})\]
4.1 Quality of evaluation functions

Success of program depends *critically* on quality of evaluation function.

- agree with utility function on terminal states
- time efficient
- reflect chances of winning

Note: Exact values don’t matter

Behaviour is preserved under any *monotonic* transformation of \(\text{Eval} \)

Only the order matters:
- payoff acts as an *ordinal utility* function
5. Cutting off search

Options...

- fixed depth limit
- iterative deepening (fixed time limit) — more robust

Problem — inaccuracies of evaluation function can have disastrous consequences.
5.1 Non-quiescence problem

Consider chess evaluation function based on material advantage. White’s depth limited search stops here...

![Chess board diagram]

Looks like a win to white — actually a win to black.

Want to stop search and apply evaluation function in positions that are quiescent. May perform quiescence search in some situations — eg. after capture.
5.2 Horizon problem

Win for white, but black may be able to chase king for extent of its depth-limited search, so does not see this. Queening move is “pushed over the horizon”.

No general solution.
6. Alpha-beta pruning

Consider Minimax with reasonable evaluation function and qui-escent cut-off. Will it work in practice?

Assume can search approx 5000 positions per second. Allowed approx 150 seconds per move. Order of 10^6 positions per move.

$$b^m = 10^6, \quad b = 35 \quad \Rightarrow \quad m = 4$$

4-ply lookahead is a hopeless chess player!

4-ply \approx human novice
8-ply \approx typical PC, human master
12-ply \approx Deep Blue, Kasparov

But do we need to search all those positions? Can we eliminate some before we get there — prune the search tree?

One method is alpha-beta pruning. . .
6.1 \(\alpha-\beta \) pruning example

\[\text{MAX} \]

\[\text{MIN} \]

\[3 \]

\[12 \]

\[8 \]

\[2 \]

\[14 \]

\[5 \]

\[2 \]
6.2 Why is it called $\alpha-\beta$?

α is the best value (to MAX) found so far off the current path.
If V is worse than α, MAX will avoid it \Rightarrow prune that branch.
Define β similarly for MIN.
6.3 The $\alpha-\beta$ algorithm

Basically Minimax + keep track of α, β + prune

```plaintext
function Max-Value(state, game, $\alpha$, $\beta$) returns the minimax value of state
    inputs: state, current state in game
            game, game description
            $\alpha$, the best score for MAX along the path to state
            $\beta$, the best score for MIN along the path to state

    if Cutoff-Test(state) then return Eval(state)
    for each $s$ in Successors(state) do
        $\alpha \leftarrow \text{Max}(\alpha, \text{Min-Value}(s, game, $\alpha$, $\beta$))$
        if $\alpha \geq \beta$ then return $\beta$
    end
    return $\alpha$

function Min-Value(state, game, $\alpha$, $\beta$) returns the minimax value of state

    if Cutoff-Test(state) then return Eval(state)
    for each $s$ in Successors(state) do
        $\beta \leftarrow \text{Min}(\beta, \text{Max-Value}(s, game, $\alpha$, $\beta$))$
        if $\beta \leq \alpha$ then return $\alpha$
    end
    return $\beta$
```
Pruning *does not* affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = $O(b^{m/2})$

⇒ *doubles* depth of search

⇒ can easily reach depth 8 and play good chess

Perfect ordering is unknown, but a simple ordering (captures first, then threats, then forward moves, then backward moves) gets fairly close.

Can we learn appropriate orderings? ⇒ *speedup learning*

(Note complexity results assume idealized tree model:

- nodes have same branching factor b
- all paths reach depth limit d
- leaf evaluations randomly distributed

Ultimately resort to empirical tests.)
7. Game-playing agents in practice

Games that don’t include chance

Checkers: Chinook became world champion in 1994 after 40-year-reign of human world champion Marion Tinsley (who retired due to poor health). Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match (not a World Championship) in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves.
7. Game-playing agents in practice

Games that include an element of chance

Dice rolls increase \(b \): 21 possible rolls with 2 dice

\textit{Backgammon} \(\approx \) 20 legal moves (can be 6,000 with 1-1 roll)

\[
\text{depth } 4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9
\]

As depth increases, probability of reaching a given node shrinks

\(\Rightarrow \) value of lookahead is diminished

\(\alpha-\beta \) pruning is much less effective

\textbf{TDGammon} uses depth-2 search + very good \textit{Eval}

\(\approx \) world-champion level
8. Summary

Games are fun to work on! (and can be addictive)

They illustrate several important points about AI

◊ problems raised by
 — incomplete knowledge
 — resource limits

◊ perfection is unattainable ⇒ must approximate

Games are to AI as grand prix racing is to automobile design
The End