Artificial Intelligence

Topic 4

Informed search algorithms

- Best-first search
- Greedy search
- A* search
- Admissible heuristics
- Memory-bounded search
- IDA*
- SMA*

Reading: Russell and Norvig, Chapter 4, Sections 1–3
1. Informed (or best-first) search

Recall uninformed search:

- select nodes for expansion on basis of distance from start
- uses only information contained in the graph
- no indication of distance to go!

Informed search:

- select nodes on basis of some estimate of distance to goal!
- requires additional information — evaluation function, or heuristic rules
- choose “best” (most promising) alternative ⇒ best-first search.

Implementation:

QueueingFn = insert successors in decreasing order of desirability

Examples:

- greedy search
- A* search
2. Greedy search

Assume we have an estimate of the distance to the goal.

For example, in our travelling to Bucharest problem, we may know straight-line distances to Bucharest...

Greedy search always chooses to visit the candidate node with the smallest estimate

⇒ that which appears to be closest to goal

Evaluation function $h(n)$ (heuristic)

$= \text{estimate of cost from } n \text{ to } \text{goal}$

E.g., $h_{\text{SLD}}(n) = \text{straight-line distance from } n \text{ to Bucharest}$
2. Greedy search
2. Greedy search

Complete? *No, in general.* e.g. can get stuck in loops.

Example: Iasi to Fagaras...

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time? $O(b^m)$, but a good heuristic can give dramatic improvement

Space? $O(b^m)$—keeps all nodes in memory

Optimal? *No*
2.1 Means-ends Analysis

Example of greedy search. (Used in SOAR problem solver.)

Heuristic: Pick operations that reduce as much as possible the “difference” between the intermediate state and goal state.

eg. Missionaries and cannibals

Indicates best choice in all states except for \(\langle \{MC\}, \{MMCCB\} \rangle \) and \(\langle \{MMCCB\}, \{MC\} \rangle \)
3. A* search

Greedy search minimises estimated cost to goal, and thereby (hopefully) reduces search cost, but is neither optimal nor complete.

Uniform-cost search minimises path cost so far and is optimal and complete, but is costly.

Can we get the best of both worlds...?

Yes! Just add the two together to get estimate of total path length of solution as our evaluation function...

Evaluation function

$$f(n) = g(n) + h(n)$$

$$g(n) = \text{cost so far to reach } n$$

$$h(n) = \text{estimated cost to goal from } n$$

$$f(n) = \text{estimated total cost of path through } n \text{ to goal}$$
3. **A* search**
A heuristic h is **admissible** iff

$$h(n) \leq h^*(n) \text{ for all } n$$

where $h^*(n)$ is the *true* cost from n.

i.e. $h(n)$ *never overestimates*

e.g., $h_{SLD}(n)$ never overestimates the actual road distance

Can prove:

if $h(n)$ is admissible, $f(n)$ provides a complete and optimal search!

\Rightarrow called A* search.
3.1 Optimality of A*

Theorem: A* search is optimal

Proof

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1.

\[
\begin{align*}
 f(G_2) &= g(G_2) & \text{since } h(G_2) = 0 \\
 &> g(G_1) & \text{since } G_2 \text{ is suboptimal} \\
 &\geq g(n) + h(n) & \text{since } h \text{ is admissible} \\
 &= f(n)
\end{align*}
\]

Since $f(G_2) > f(n)$, A* will not select G_2 for expansion.
To get a more intuitive view, we consider the f-values along any path.

For many admissible heuristics, f-values increase *monotonically* (see Romania problem).

For some admissible heuristics, f may be nonmonotonic — ie it may *decrease* at some points.

For example, suppose n' is a successor of n.

\[
\begin{array}{c}
n \quad g=5 \quad h=4 \quad f=9 \\
1 \\
n' \quad g'=6 \quad h'=2 \quad f'=8
\end{array}
\]

But $f' = 8$ is redundant!

\[
f(n) = 9 \quad \Rightarrow \quad \text{true cost of a path through } n \text{ is } \geq 9
\]
\[
\Rightarrow \quad \text{true cost of a path through } n' \text{ is } \geq 9
\]

Pathmax modification to A^*:

\[
f(n') = \max(g(n') + h(n'), f(n))
\]

With pathmax, f is always increases monotonically $\cdots \leadsto$
Lemma: A* (with pathmax) expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first/uniform-cost adds layers or “circles” — A* “stretches” towards goal)

If f^* is cost of optimal solution path:

- A* expands all nodes with $f(n) < f^*$
- A* expands some nodes with $f(n) = f^*$

Can see intuitively that A* is complete and optimal.
3.4 Properties of A*

Complete Yes, unless there are infinitely many nodes with \(f \leq f(G) \)

Time Exponential in [relative error in \(h \times \) length of soln.]

Space Keeps all nodes in memory (see below)

Optimal Yes—cannot expand \(f_{i+1} \) until \(f_i \) is finished

Among optimal algorithms of this type A* is *optimally efficient*! ie. no other algorithm is guaranteed to expand fewer nodes.

“Proof”

Any algorithm that does not expand all nodes in each contour may miss an optimal solution.
4. Admissible heuristics

Straight line distance is an obvious heuristic for distance planning. What about other problems?

This section ⇒ examine heuristics in more detail.

E.g., two heuristics for the 8-puzzle:

\[
\begin{array}{ccc}
5 & 4 & \text{(gray)} \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\quad \quad \quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{(gray)} & 4 \\
7 & 6 & 5 \\
\end{array}
\]

\[h_1(n) = \text{number of misplaced tiles}\]
\[h_2(n) = \text{total Manhattan distance}\]
\[= \text{(i.e., no. of squares from desired location of each tile)}\]

\[
\begin{align*}
\h_1(S) &= ?? \\
\h_2(S) &= ?? \\
\end{align*}
\]

Are both admissible?
4.1 Measuring performance

Quality of heuristic can be characterised by effective branching factor b^*.

Assume:

- A^* expands N nodes
- solution depth d

b^* is branching factor of uniform tree, depth d with N nodes:

$$N = 1 + b^* + (b^*)^2 + \cdots + (b^*)^d$$

- tends to remain fairly constant over problem instances
- can be determined empirically
 $$\Rightarrow$$ fairly good guide to heuristic performance

a good heuristic would have b^ close to 1*
4.1 Measuring performance

Example

Effective branching factors for iterative deepening search and A* with h_1 and h_2 (averaged over 100 randomly generated instances of 8-puzzle for each solution length):

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>

- informed better than uninformed
- h_2 better than h_1

Is h_2 always better than h_1?
4.2 Dominance

Yes!

We say h_2 dominates h_1 if $h_2(n) \geq h_1(n)$ for all n (both admissible).

$dominance \Rightarrow better\ efficiency$

— h_2 will expand fewer nodes on average than h_1

“Proof”

A* will expand all nodes n with $f(n) < f^*$.

$\Rightarrow A^*$ will expand all nodes with $h(n) < f^* - g(n)$

But $h_2(n) \geq h_1(n)$ so all nodes expanded with h_2 will also be expanded with h_1 (h_1 may expand others as well).

always better to use an (admissible) heuristic function with higher values
4.3 Inventing heuristics — relaxed problems

- How can we come up with a heuristic?
- Can the computer do it automatically?

A problem is relaxed by reducing restrictions on operators.

cost of exact solution of a relaxed problem is often a good heuristic for original problem

Example

- if the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- if the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Note: Must also ensure heuristic itself is not too expensive to calculate.

Extreme case: perfect heuristic can be found by carrying out search on original problem.
4.4 Automatic generation of heuristics

If problem is defined in suitable formal language \Rightarrow may be possible to construct relaxed problems automatically.

eg. 8-puzzle operator description

$$A \text{ is adjacent to } B \ & \ B \text{ is blank } \rightarrow \text{ can move from } A \text{ to } B$$

Relaxed rules (eliminate preconditions)

$$A \text{ is adjacent to } B \rightarrow \text{ can move from } A \text{ to } B$$

$$B \text{ is blank } \rightarrow \text{ can move from } A \text{ to } B$$

$$\text{can move from } A \text{ to } B$$

Absolver (Prieditis 1993)

- new heuristic for 8-puzzle better than any existing one
- first useful heuristic for Rubik’s cube!
5. Memory-bounded Search

Good heuristics improve search, but many problems are still too hard.

Usually memory restrictions that impose a hard limit.

(eg. recall estimates for breadth-first search)

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 millisecond</td>
<td>100 bytes</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>.1 seconds</td>
<td>11 kilobytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 minutes</td>
<td>111 megabytes</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
<td>11 gigabytes</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
<td>111 terabytes</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>3500 years</td>
<td>11,111 terabytes</td>
</tr>
</tbody>
</table>

This section — algorithms designed to save memory.

- IDA*
- SMA*
Recall uninformed search

- uniform-cost/breadth-first search
 + completeness, optimality
 - exponential space usage
- depth-first
 + linear space usage
 - incomplete, suboptimal

Solution: iterative-deepening \Rightarrow explores “uniform-cost trees”, or “contours”, using linear space.
5.1 Iterative Deepening A* (IDA*)

Can we do the same with A*?

Contours more directed, but same technique applies!

Modify depth-limited search to use f-cost limit, rather than depth limit $\Rightarrow IDA^*$

Complete? Yes (with admissible heuristic)
Optimal? Yes (with admissible heuristic)
Space? Linear in path length
Time? ?
5.1 Iterative Deepening A* (IDA*)

Time complexity of IDA*

Depends on number of different values f can take on.

- small number of values, few iterations

 eg. 8-puzzle

- many values, many iterations

 eg. Romania example, each state has different heuristic \(\Rightarrow \) only one extra town in each contour

Worst case: A^* expands N nodes, IDA* goes through N iterations

\[
1 + 2 + \cdots + N \Rightarrow O(N^2)
\]

(Recall N in turn is exponential in $d \times$ relative error in h.)

How does this compare with ID?
A solution: increase f-cost limit by fixed amount ϵ in each iteration

\Rightarrow returns solutions at worst ϵ worse than optimal

Called ϵ-admissible.

IDA* was first memory-bounded optimal heuristic algorithm and solved many practical problems.
5.2 Simplified memory-bounded A^* (SMA*)

Uses all available memory.

How does it work?

- Need to generate successor nodes but no memory left ⇒ drop, or "forget", least promising nodes.
- Keep record of best f-cost of forgotten nodes in ancestor.
- Only regenerate nodes if all more promising options are exhausted.

Example (values of forgotten nodes in parentheses) \(\cdots \Rightarrow\)
5.2 Simplified memory-bounded A* (SMA*)
5.2 Simplified memory-bounded A* (SMA*)

Performance

- Complete if available memory is sufficient to store the shallowest solution path.
- Optimal if available memory is sufficient to store the shallowest solution path. Otherwise best “solution” given available memory.

Summary

- Solves significantly more difficult problems than A*.
- Performs well on highly-connected state spaces and real-valued heuristics on which A* has difficulty.
- Susceptible to continual “switching” between candidate solution paths.

ie. limit in memory can lead to intractible computation time
The End